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From Regression to Hypergraph discovery

The regression problem

Suppose y = f(x), given samples (X;, Y;) for i =1,.., N,
approximate f

Graph representation
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Gaussian Process Regression

For (Xi, Yi) e RP xR, i =1,.., N, approximate f s.t. y = f(x).

Linear Ridge regression

Our approximation is a linear function f(x) = £*7 x with

N
B* = arg min Z!Y, — BTXiI> + 18I
BERP iy

We know that, for k(x,y) = xTy,

feH= {Z aik(-, z;), for some z;, o}



Gaussian Process Regression

For (Xi,Yi) e RP xR, i =1,.., N, approximate f s.t. y = f(x).

Quadratic Ridge regression

Our approximation is a quadratic function 7(x) = 8*T1(x),

P(x) = (1,x, x3),

B* —argmmZW BTYX)P +18117
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We know that, for k(x,y) = ¥(x) T (y),

fet = {Z aik(-, z;), for some z;, o}



Gaussian Process Regression

For (Xi, Yi) e RP xR, i =1,.., N, approximate f s.t. y = f(x).

Kernel Ridge regression

Our approximation is a function in a space H,! defined by the
kernel k.

:argman]Y—f NEERIE
fFEH i—1

We know that,

feHt = {Z aik(-, z;), for some z;, o}

"H is called the Reproducing Kernel Hilbert Space (RKHS) of k



From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set

of equations
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From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set
of equations



The electrical circuit example?

A
I © 1 b= C(vy)
o) == i -2 Vo — V3 = R(i3)i3
— /\p/(\é}/ . —Vh = L2(Iz)%

20Owhadi, Computational Graph Completion.



The electrical circuit example

Since any set of equations can be represented as a Computational
Hypergraph, we can obtain:

Wi




From Regression to Hypergraph discovery

Regression Given samples Y; = f(X;) for i = 1,.., N, approximate f

OnO



From Regression to Hypergraph discovery

Regression Given samples Y; = f(X;) for i = 1,.., N, approximate f

OnO

Hypergraph Completion Given the graph’s structure and samples of its variables,

approximate unknown edges, and missing data.
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From Regression to Hypergraph discovery

Regression Given samples Y; = f(X;) for i = 1,.., N, approximate f

OnO

Hypergraph Completion Given the graph’s structure and samples of its variables,

approximate unknown edges, and missing data.

Hypergraph discovery Given samples of the variables, find the structure of the graph.



e Brain networks

Figure 1: Image from Shu-Hsien Chu
et al.

Objective: Discover functional dependencies between the
activities of different brain regions.



e Brain networks

e Economic networks
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Figure 1: Image from Schweitzer et al.

Objective: Discover functional dependencies between economic

markers of different banks
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e Brain networks
e Economic networks

e Weather modelling
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Figure 1: Image from Michael Ek.

Objective: Discover functional dependencies between the different

variables



Existing methods

Causal inference and Probabilistic graphs

e Usually tackle a different problem (e.g., conditional
independence or causality)

e Relies on strong assumptions (e.g., access to a distribution)



Existing methods

Causal inference and Probabilistic graphs

e Usually tackle a different problem (e.g., conditional
independence or causality)

e Relies on strong assumptions (e.g., access to a distribution)

Sparse regressions

e Uses knowledge of sparse representations in a dictionary of
functions

e Example: SINDY



Starting from an empty graph

The CHD problem

Given N samples of our variables, recover the functional
dependencies between them (i.e., the structure of the graph).

10



Starting from an empty graph

Co)
Ce)

Co)

Ce)

The CHD problem

Given N samples of xi, X2, X3, X, x5, recover the functional
dependencies (i.e. the structure of the graph).

10



Ancestors: If x5 = f(x1, x4) for some f, x1, x4 are ancestors of xs.
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Ancestors: If x5 = f(x1, xq) for some f, x1, xa are ancestors of xs.
For each node, identify its ancestors
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Ancestors: If x5 = f(x1, x4) for some f, x1,xa are ancestors of xs.
For each node, identify its ancestors

ONORONO
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xs is not a function of There is a function gs s.t.
X1y eeey X x5 = g5(X1, ..., Xa)

There are three questions:

e Does x5 have any ancestors?
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xs is not a function of There is a function gs s.t. There is a function gs s.t.
X1, ooy X4 x5 = g5(X1, ..., X4) x5 = g5(x2, Xa)

There are three questions:

e Does x5 have any ancestors?
e If so, what is the minimum set of ancestors?
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() ONy ON
= =0 =
() Goy &7 ()
or 85 85
xs is not a function of There is a function gs s.t. There is a function gs s.t.
X1, ooy X4 x5 = g5(X1, ..., X4) x5 = g5(x2, Xa)

There are three questions:

e Does x5 have any ancestors?
e If so, what is the minimum set of ancestors?

e What kind of function is gs?
12



Does x; have any ancestors?

Ancestors, @ @ Target
samples gathered in X A samples gathered in Y

13



Does x; have any ancestors?

Ancestors, @ @ Target
samples gathered in X A samples gathered in Y

Let's see if there is g5 s.t. x5 = gs5(x1, X2, X3, X4) using a Gaussian
Process (kernel k and noise variance 7):

) 1
8 = argfmlanII,% + §|f(X) —YP (1)
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Does xs have any ancestors?

To see if this model correctly describes the data, we perform a
nonlinear variance decomposition:

gs = argming ||f||2+ %|f(X) - Y|?

14



Does xs have any ancestors?

To see if this model correctly describes the data, we perform a
nonlinear variance decomposition:

gs = argming ||f||2+ %|f(X) - Y|?

s = lleslli
(variance of data
explained by model)
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Does xs have any ancestors?

To see if this model correctly describes the data, we perform a
nonlinear variance decomposition:

gs = argming ||f||2+ %|f(X) - Y|?

AN

s = llesl n = llgs(X) — Y[
(variance of data (variance of data
explained by model) explained by noise)
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Does xs have any ancestors?

To see if this model correctly describes the data, we perform a
nonlinear variance decomposition:

gs = argming ||f||2+ %|f(X) - Y|?

s = llesl n = llgs(X) — Y[
(variance of data (variance of data
explained by model) explained by noise)

The noise n comes from two sources:

e True noise from the data
e Unexplained data variance

14



Does xs have any ancestors?

To see if this model correctly describes the data, we perform a
nonlinear variance decomposition:

gs = argming ||f||2+ %|f(X) - Y|?

s = llesl n = llgs(X) — Y[
(variance of data (variance of data
explained by model) explained by noise)

The noise n comes from two sources:

e True noise from the data
e Unexplained data variance

e Quantifies model misspecification 14



Does xs have any ancestors?

Noise-to-signal ratio

#+s €10,1], quantifies how much the data agrees with x5 having

X1, .., X4 aS ancestors

o if nis ~ 0: The model is well specified.

e if - ~ 1. The model is misspecified.

15



Does x; have any ancestors?

Noise-to-signal ratio

n+s € [0, 1], quantifies how much the data agrees with xs having
X1, .., X4 S ancestors

o if

n+ ~ 0: The model is well specified.

s ~ 1. The model is misspecified.

If n—JrS < 0.5, x5 has ancestors If

@ “@ or

> 0.5, x5 has no ancestors

Ce)

n+s

HEEE;

15



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

16



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

gs linear

Current kernel: Linear

n
k(xvy) =1 +iny1
i=1 16



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

"~ 0.5 x5 has ancestors
n-+s

. +
and g,

is linear

Current kernel: Linear

n
k(xvy) =1 +iny1
i=1 16



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

"~ 0.5 x5 has ancestors
n-+s

. +

is linear

-1 > 0.5

n+s
g5 quadratic

Quadratic Fu

Current kernel: Quadratic

n n
kOGy) =14 > xiyi+ D> Xixyiyj
i=1 ij=1 16



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

"~ 0.5 x5 has ancestors
n-+s

. +
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. 1> 0.5
Quadratic Fu nts

n_ 0.5 X5 hasancestors

+

is quadratic

Current kernel: Quadratic
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Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

"~ 0.5 x5 has ancestors
n-+s

T
R linear d
Smooth Functions E—> and gs

is linear

-1 > 0.5

Quadratic Fu nts

n_ 0.5 X5 hasancestors

+
g5 qua@L) and gs

is quadratic

- > 0.5

n+s
g5 smooth

Current kernel: Nonlinear

n n n

)2

k(x,y) = 14> xivi+ Y xixiyiyi+] [(1+e= 077
i=1 i=1

i,j=1 16



Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

"~ 0.5 x5 has ancestors
n-+s

T
R linear d
Smooth Functions E—> and gs

is linear

-1 > 0.5

Quadratic Fu n+s

n_ 0.5 X5 hasancestors

:

is quadratic

s > 05

_n_ -~ 0.5 x5 has ancestors

n+s

is smooth

Current kernel: Nonlinear

n n n
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Choosing the kernel

Is there a g5 s.t. x5 = gs5(x1,..,xa) ? The kernel defines the set of
functions we are searching gs in.

n_ -~ 05 X5 has ancestors
n-+s

s
R linear d
Smooth Functions E—> and gs

is linear

. _n_ > 0.5
Quadratic Fu nts

n_ 0.5 X5 hasancestors

:

is quadratic

s > 05

_n_ -~ 0.5 x5 has ancestors

n+s

is smooth
- >0.5

n+s

Current kernel:  Nonlinear x5 has no ancestor

n n n
2
k(x,y) = 1+Z x;y,'—i-Z x,4><jy,-yj+H(1+e*(X: Yi) )
i=1 i=1

S 16



what is the minimum set of ancestors?

To find the minimum set of ancestors, we will:
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what is the minimum set of ancestors?

To find the minimum set of ancestors, we will:

e Start with all nodes as potential ancestors
e |teratively prune potential ancestors:

e |dentify the least important potential ancestor
e Remove it from potential ancestors

n
n+s

e Check that the data agrees <= we use

17



what is the minimum set of ancestors?

To find the minimum set of ancestors, we will:

e Start with all nodes as potential ancestors
e |teratively prune potential ancestors:

e Identify the least important potential ancestor

e Remove it from potential ancestors
n

o Check that the data agrees <= we use 1

17



Identify the least important ancestor

if we found gs s.t.xs = g5(x1, x2, x3, xa) using a kernel k.
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Identify the least important ancestor
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Suppose we are using the quadratic kernel:

n n
k(6 y) =14 xiyi+ > xixyiyj
i=1 ij—1
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n n
k(6 y) =14 xiyi+ > xixyiyj
i=1 ij—1
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Identify the least important ancestor

if we found gs s.t.xs = g5(x1, x2, x3, xa) using a kernel k.

Suppose we are using the quadratic kernel:

n n
k(6 y) =14 xiyi+ > xixyiyj
i=1 ij—1

Observe k = ky + k_»

e ky depends on xp: ka(x,y) = xoy2 + x22y22 + 22#2 XoXjYoYj

e k_ 5 does not depend on xo: k_» =k — ky

18



Identify the least important ancestor

if we found gs s.t. x5 = gs(x1, X2, X3, x4) using a kernel k.
k=ky + ko

Then we there is
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Identify the least important ancestor

if we found gs s.t. x5 = gs(x1, X2, X3, x4) using a kernel k.
k=ky + ko
Then we there is

o fr € Hy,, depends on x»
o f 5 € Hy ,, does not depend on xp

such that
g=h+fos

2 2 2
s = llgsllk = lIllt, + [[f-2llk_,

19



Identify the least important ancestor

if we found gs s.t. x5 = gs(x1, X2, X3, x4) using a kernel k.
k=ky + ko
Then we there is

o fr € Hy,, depends on x»
o f 5 € Hy ,, does not depend on xp

such that
g=h+fos
2 2
s=llgslz = Iflz, + IIf-2l7,

We can define the activation ap, which quantifies the contribution
of x» to the signal data variance:

sl

2= 2
||g5||k 19




The Algorithm

Alg. for discovering the

ancestors of xg

11:
12:
13:

LcoNoosWwhH

. Assign all other nodes as ancestors
. Compute - for each kernel

n+s
if No kernel has low noise then

x5 has no ancestors
else

Pick first kernel with low noise
end if

. while there are some ancestors left do

compute the contribution of each
node

remove the node that contributes
the least

recompute
end while

n+s

using the evolution of n—j_s, choose the
number of ancestors

20



The Algorithm

Alg. for discovering the
ancestors of xg

1: Assign all other nodes as ancestors

2: Compute -2 for each kernel

3: if No kernel has low noise then

4. x5 has no ancestors

5: else

6: Pick first kernel with low noise

7: end if

8: while there are some ancestors left do

9: compute the contribution of each
node

10: remove the node that contributes
the least

11: recompute 7

12: end while

13: using the evolution of n—j_s, choose the
number of ancestors

e Linear kernel: -2~ = 0.81
n+s

e Quadratic kernel: nL-Fs =0.12
n

e Nonlinear kernel: -~ = 0.44
n+s

20



The Algorithm

Alg. for discovering the
ancestors of xg

1: Assign all other nodes as ancestors

2: Compute 5 for each kernel

3: if No kernel has low noise then

4. x5 has no ancestors

5: else

6: Pick first kernel with low noise

7: end if

8: while there are some ancestors left do

9: compute the contribution of each
node

10: remove the node that contributes
the least

11: recompute 7

12: end while

13: using the evolution of n—j_s, choose the
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The Algorithm

Alg. for discovering the @
ancestors of x5 N

1: Assign all other nodes as ancestors h ‘32 — 005 .
2: Compute 7 for each kernel ~._ 0
3: if No kernel has low noise then B @
4. x5 has no ancestors -
5 o ° a3 = 0.45 J
. else -
o . . - a, =0.11
6: Pick first kernel with low noise @ K
7: end if 4
8: while there are some ancestors left do
9: compute the contribution of each 10 ———
node o
10: remove the node that contributes
the least 3 °
H
. n
11: recompute - o4
12: end while 0
13: using the evolution of n_’:_S, choose the
00
number of ancestors ¢ : z

number of ancestors

20



The Algorithm

Alg. for discovering the

ancestors of x5

11:
12:
13:

eoNasWNH

: Assign all other nodes as ancestors
. Compute

n
n+s
if No kernel has low noise then

for each kernel

x5 has no ancestors
else

Pick first kernel with low noise
end if

. while there are some ancestors left do

compute the contribution of each
node
remove the node that contributes

the least

recompute —-

n+s
end while

using the evolution of T—?—s choose the

number of ancestors

— noise

3 2
number of ancestors

20
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The Algorithm

Alg. for discovering the @
ancestors of xs @ .
. a1 = 0.69
1: Assign all other nodes as ancestors N
2: Compute s for each kernel A
3: if No kernel has low noise then B @
151 | x5 has no ancestors o= 042" - K
ese . . -7 as = 0.15

6: Pick first kernel with low noise @ K
7: end if 4
8: while there are some ancestors left do
9: compute the contribution of each 10 ———

node o
10: remove the node that contributes
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12: end while wf
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number of ancestors ¢ : z

number of ancestors
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The Algorithm

Alg. for discovering the @
ancestors of xs @ .
. a1 = 0.60
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The Algorithm

Alg. for discovering the

ancestors of x5

11:
12:
13:

eoNasWNH

: Assign all other nodes as ancestors
. Compute

" for each kernel
n+s

if No kernel has low noise then

x5 has no ancestors
else

Pick first kernel with low noise
end if

. while there are some ancestors left do

compute the contribution of each
node

remove the node that contributes
the least
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end while
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The Algorithm

Alg. for discovering the

ancestors of x5

11:
12:
13:

eoNasWNH

: Assign all other nodes as ancestors
. Compute

n
n+s
if No kernel has low noise then

for each kernel

x5 has no ancestors
else

Pick first kernel with low noise
end if

. while there are some ancestors left do

compute the contribution of each
node

remove the node that contributes
the least

recompute
end while

n

n+s

using the evolution of choose the

n
n+ts’

number of ancestors

— noise
-=-- chosen number of ancestors=2

o

number of ancestors

20



The Fermi-Pasta-Ulam-Tsingou problem

Let N = 10 masses, for i = 0,.., N — 1, their displacement from
equilibrium x;. We have:

2
. c
Xi = p(XiH + xi-1 — 2x) (1 + (i1 — xi—-1)°) (2)

Boundary condition: x_1 = xy =0
|- @@ @ G ®
Jl]j J’L J:!T

Figure 2: Nelson et al., 2018
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The Fermi-Pasta-Ulam-Tsingou problem

2
. <
X = p(XiJrl + xi—1 — 2x;)(1 + (Xi41 — xi—1)?) (3)

We observe n = 1000 snapshots of x;, x;, x;,i = 0,..,9.

22



The Fermi-Pasta-Ulam-Tsingou problem

2
. 9
Xj = 13 (X1 + xi-1 = 2x)(1 + (Xi41 — xi-1)%) (3)
We observe n = 1000 snapshots of x;, x;, X;, i = 0,..,9. We recover
the graph perfectly, even with uninformative prior:
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The Fermi-Pasta-Ulam-Tsingou problem

A typical evolution of the noise (for X7):

10
— noise —— noise increment
=== chosen number of ancestors=3 === chosen number of ancestors=3
0.8 0.8
=1
I 0.6
0.6 &

0
7T
n

e

0.4

o
IS
L
+lq) -

n
¥

0.2 4
1 /\/___\
0.0
0.0 T T T T T T T T T T T T
29 23 17 12 © 1 29 23 17 12 6 1
number of ancestors, denoted by g number of ancestors, denoted by g

Figure 3: Left: evolution of noise-to-signal ratio . Right: Increment in
noise (35(q) — 77<(q — 1) for g the number of ancestors)
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COVID dataset

The dataset: Google’s COVID data on France

Daily values of 31 variables during 500 days:

e Epidemiology dataset (new infections, cumulative deaths,...)

e Hospital dataset (number of admitted patients, patients in
intensive care, etc.)

e Vaccine dataset (number of vaccinated individuals,...)

e Policy dataset (indicators related to government responses:

school closures, lockdown measures, etc.)

Cases

24

1111 A
ol ﬁ\/ B




-
Q
[72]
[
-
©
©
=
>
(@)
@)



COVID dataset
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COVID dataset

1.0 r
—— noise —— noise increment
=== chosen number of ancestors=5 057 - chosen number of ancestors=5
0.8
=
|
0.6 ! =

n
7T
n
T

rsla) -

0.4

0.2

0.0

T T T u
30 24 18 12 © 1 30 24 18 12 © 1
number of ancestors, denoted by g number of ancestors, denoted by g

Figure 4: Evolution of the noise-to-signal ratio when pruning ancestors
for the cumulative number of hospitalized patients.
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The Sachs dataset

Activators

1. a-CD3

2. a-CD28

3. ICAM-2

4.PMA

5. B2cAMP MAPKKK;
Inhibitors l

6. G06976 2N

7. AKT inh MEK4/7

8. Psitect \

9.U0126 Z ‘l’ l \
10. LY294002 \JNK} (p38)

Figure 5: Sachs et al, 2005 30



The Sachs dataset

In this dataset, some variables are strongly dependent, while other
dependencies are weaker. To tackle this disparity, we cluster the
nodes:
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The Sachs dataset

In this dataset, some variables are strongly dependent, while other
dependencies are weaker. To tackle this disparity, we cluster the
nodes:
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The Sachs dataset

4.PMA

5. p2cAMP P

Inhibitors. l
MEK4/7

9. U0126
10, LY294002 Qﬂ.’a

Figure 8: Comparison of recovered graph and protein signaling network
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Conclusion

Contributions

We developed a Gaussian Process-based framework to recover
functional dependencies between variables

e Works for any unlabelled dataset, with few assumptions

e interpretable
e Recovers known equations in toy examples

e Yields plausible results for real datasets
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Questions ?

Computational Hypergraph Discovery, a
Gaussian Process Framework for Connecting
the Dots

Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo
Baptista, Nicolas Rouquette, and Houman Owhadi
ArXiv, (2023). /abs/2311.17007

) ComputationalHypergraphDiscovery
@ pip install ComputationalHypergraphDiscovery
Blog post on my website
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https://github.com/TheoBourdais/ComputationalHypergraphDiscovery
https://theobourdais.github.io/posts/2023/11/CHD/

