Computational Hypergraph Discovery

Théo Bourdais January 18, 2024

California Institute of Technology

<i>x</i> ₁	ÿ1		<i>x</i> ₁₀
0.45	0.66		-0.23
:	:	·	:
-0.78	-0.12		0.89

$$\ddot{x}_{1} = \frac{c^{2}}{h^{2}}(x_{2} + x_{0} - 2x_{1})(1 + (x_{2} - x_{0})^{3})$$

$$\vdots$$

$$\ddot{x}_{10} = \frac{c^{2}}{h^{2}}(x_{9} - 2x_{10})(1 - x_{9}^{3})$$

Computational Hypergraph Discovery, a Gaussian Process Framework for Connecting the Dots.

Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo Baptista, Nicolas Rouquette, and Houman Owhadi *ArXiv, (2023). /abs/2311.17007*

The regression problem

Suppose
$$y = f(x)$$
, given samples (X_i, Y_i) for $i = 1, ..., N$, approximate f

Graph representation

For
$$(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$$
, $i = 1, .., N$, approximate f s.t. $y = f(x)$.

Linear Ridge regression

Our approximation is a linear function $\tilde{f}(x) = \beta^* {}^T x$ with

$$\beta^* = \underset{\beta \in \mathbb{R}^p}{\arg\min} \sum_{i=1}^{N} |Y_i - \beta^T X_i|^2 + \gamma ||\beta||^2$$

We know that, for $k(x, y) = x^T y$,

$$\widetilde{f} \in \mathcal{H}_k = \overline{\{\sum_i \alpha_i k(\cdot, z_i), \text{for some } z_i, \alpha_i\}}$$

For
$$(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$$
, $i = 1, .., N$, approximate f s.t. $y = f(x)$.

Quadratic Ridge regression

Our approximation is a quadratic function $\tilde{f}(x) = \beta^{*T} \psi(x)$, $\psi(x) = (1, x, x^2)$,

$$\beta^* = \underset{\beta \in \mathbb{R}^{2p+1}}{\arg\min} \sum_{i=1}^{N} |Y_i - \beta^T \psi(X_i)|^2 + \gamma ||\beta||^2$$

We know that, for $k(x, y) = \psi(x)^T \psi(y)$,

$$\widetilde{f} \in \mathcal{H}_k = \overline{\{\sum_i \alpha_i k(\cdot, z_i), \text{for some } z_i, \alpha_i\}}$$

For
$$(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$$
, $i = 1, .., N$, approximate f s.t. $y = f(x)$.

Kernel Ridge regression

Our approximation is a function in a space \mathcal{H}_k^1 defined by the kernel k.

$$\tilde{f} = \underset{f \in \mathcal{H}_k}{\arg\min} \sum_{i=1}^{N} |Y_i - f(X_i)|^2 + \gamma ||f||^2$$

We know that,

$$\tilde{f} \in \mathcal{H}_k = \{\sum_i \alpha_i k(\cdot, z_i), \text{ for some } z_i, \alpha_i\}$$

 $^{{}^{1}\}mathcal{H}_{k}$ is called the Reproducing Kernel Hilbert Space (RKHS) of k

A computational hypergraph is a graphical representation of a set of equations

y = f(x)

A computational hypergraph is a graphical representation of a set of equations

A computational hypergraph is a graphical representation of a set of equations

A computational hypergraph is a graphical representation of a set of equations

The electrical circuit example²

$$i_{1} + i_{3} = i_{2}$$

$$i_{3} = C(V_{3})\frac{dV_{3}}{dt}$$

$$V_{2} - V_{3} = R(i_{3})i_{3}$$

$$-V_{2} = L_{2}(i_{2})\frac{di_{2}}{dt}$$

$$V_{2} - V_{1} = L_{1}(i_{1})\frac{di_{1}}{dt}$$

²Owhadi, *Computational Graph Completion*.

The electrical circuit example

Caltech

Since any set of equations can be represented as a Computational Hypergraph, we can obtain:

From Regression to Hypergraph discovery

Regression Given samples $Y_i = f(X_i)$ for i = 1, ..., N, approximate f

From Regression to Hypergraph discovery

Regression Given samples $Y_i = f(X_i)$ for i = 1, ..., N, approximate f

Hypergraph Completion Given the graph's structure and samples of its variables,

approximate unknown edges, and missing data.

From Regression to Hypergraph discovery

Caltech

Regression Given samples $Y_i = f(X_i)$ for i = 1, ..., N, approximate f

Hypergraph Completion Given the graph's structure and samples of its variables,

approximate unknown edges, and missing data.

Hypergraph discovery Given samples of the variables, find the structure of the graph.

• Brain networks

Figure 1: Image from Shu-Hsien Chu et al.

Objective: Discover functional dependencies between the activities of different brain regions.

Examples

- Brain networks
- Economic networks

Figure 1: Image from Schweitzer et al.

Objective: Discover functional dependencies between economic markers of different banks

Examples

- Brain networks
- Economic networks
- Weather modelling

Figure 1: Image from Michael Ek.

Objective: Discover functional dependencies between the different variables

Causal inference and Probabilistic graphs

- Usually tackle a different problem (e.g., conditional independence or causality)
- Relies on strong assumptions (e.g., access to a distribution)

Causal inference and Probabilistic graphs

- Usually tackle a different problem (e.g., conditional independence or causality)
- Relies on strong assumptions (e.g., access to a distribution)

Sparse regressions

- Uses knowledge of sparse representations in a dictionary of functions
- Example: SINDY

The CHD problem

Given N samples of our variables, recover the functional dependencies between them (i.e., the structure of the graph).

Starting from an empty graph

The CHD problem

Given N samples of x_1, x_2, x_3, x_4, x_5 , recover the functional dependencies (i.e. the structure of the graph).

Ancestors: If $x_5 = f(x_1, x_4)$ for some f, x_1, x_4 are ancestors of x_5 .

Ancestors: If $x_5 = f(x_1, x_4)$ for some f, x_1, x_4 are ancestors of x_5 . For each node, identify its ancestors

Ancestors: If $x_5 = f(x_1, x_4)$ for some f, x_1, x_4 are ancestors of x_5 . For each node, identify its ancestors

Ancestors: If $x_5 = f(x_1, x_4)$ for some f, x_1, x_4 are ancestors of x_5 . For each node, identify its ancestors

Our solution

There are three questions:

• Does x₅ have any ancestors?

Our solution

Caltech

There are three questions:

- Does x₅ have any ancestors?
- If so, what is the minimum set of ancestors?

Our solution

Caltech

There are three questions:

- Does x₅ have any ancestors?
- If so, what is the minimum set of ancestors?
- What kind of function is g₅?

Caltech

Ancestors,

samples gathered in X

Target

samples gathered in Y

Caltech

Let's see if there is g_5 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a Gaussian Process (kernel k and noise variance γ):

$$g_5 = \arg\min_{f} ||f||_k^2 + \frac{1}{\gamma} |f(X) - Y|^2$$
(1)

$$g_5 = rgmin_f \; \|f\|_k^2 + rac{1}{\gamma} |f(X) - Y|^2$$

$$g_{5} = \arg \min_{f} ||f||_{k}^{2} + \frac{1}{\gamma}|f(X) - Y|^{2}$$

$$s = ||g_{5}||_{k}^{2}$$
(variance of data
explained by model)

The noise *n* comes from two sources:

• True noise from the data

The noise *n* comes from two sources:

- True noise from the data
- Unexplained data variance

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

The noise *n* comes from two sources:

- True noise from the data
- Unexplained data variance
 - Quantifies model misspecification

Noise-to-signal ratio

 $\frac{n}{n+s} \in [0,1],$ quantifies how much the data agrees with x_5 having $x_1,..,x_4$ as ancestors

- if $\frac{n}{n+s} \approx 0$: The model is well specified.
- if $\frac{n}{n+s} \approx 1$: The model is misspecified.

Noise-to-signal ratio

 $\frac{n}{n+s} \in [0,1],$ quantifies how much the data agrees with x_5 having $x_1,..,x_4$ as ancestors

- if $\frac{n}{n+s} \approx 0$: The model is well specified.
- if $\frac{n}{n+s} \approx 1$: The model is misspecified.

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Linear

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i$$

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Linear

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i$$

Caltech

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Quadratic

$$k(x, y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_i y_j$$

Caltech

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Quadratic

$$k(x, y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_i y_j$$

Caltech

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Nonlinear

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_j y_j + \prod_{i=1}^{n} (1 + e^{-(x_i - y_i)^2})$$

Caltech

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

Current kernel: Nonlinear

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_j y_j + \prod_{i=1}^{n} (1 + e^{-(x_i - y_i)^2})$$

Caltech

Is there a g_5 s.t. $x_5 = g_5(x_1, ..., x_4)$? The kernel defines the set of functions we are searching g_5 in.

• Start with all nodes as potential ancestors

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
 - Identify the least important potential ancestor

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
 - Identify the least important potential ancestor
 - Remove it from potential ancestors

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
 - Identify the least important potential ancestor
 - Remove it from potential ancestors
 - Check that the data agrees

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
 - Identify the least important potential ancestor
 - Remove it from potential ancestors
 - Check that the data agrees \Leftarrow we use $\frac{n}{n+s}$

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
 - Identify the least important potential ancestor
 - Remove it from potential ancestors
 - Check that the data agrees \leftarrow we use $\frac{n}{n+s}$

Suppose we are using the quadratic kernel:

$$k(x, y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_i y_j$$

Suppose we are using the quadratic kernel:

$$k(x, y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_j y_j$$

Observe $k = k_2 + k_{-2}$

Suppose we are using the quadratic kernel:

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_i y_j$$

Observe $k = k_2 + k_{-2}$

• k_2 depends on x_2 : $k_2(x, y) = x_2y_2 + x_2^2y_2^2 + 2\sum_{j \neq 2} x_2x_jy_2y_j$

Suppose we are using the quadratic kernel:

$$k(x,y) = 1 + \sum_{i=1}^{n} x_i y_i + \sum_{i,j=1}^{n} x_i x_j y_i y_j$$

Observe $k = k_2 + k_{-2}$

- k_2 depends on x_2 : $k_2(x, y) = x_2y_2 + x_2^2y_2^2 + 2\sum_{j \neq 2} x_2x_jy_2y_j$
- k_{-2} does not depend on x_2 : $k_{-2} = k k_2$

Identify the least important ancestor

if we found g_5 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a kernel k.

 $k = k_2 + k_{-2}$

Then we there is

Identify the least important ancestor

if we found
$$g_5$$
 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a kernel k .

$$k = k_2 + k_{-2}$$

Then we there is

• $f_2 \in \mathcal{H}_{k_2}$, depends on x_2

Identify the least important ancestor

if we found g_5 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a kernel k.

$$k = k_2 + k_{-2}$$

Then we there is

- $f_2 \in \mathcal{H}_{k_2}$, depends on x_2
- $f_{-2} \in \mathcal{H}_{k_{-2}}$, does not depend on x_2

if we found
$$g_5$$
 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a kernel k.

 $k = k_2 + k_{-2}$

Then we there is

- $f_2 \in \mathcal{H}_{k_2}$, depends on x_2
- $f_{-2} \in \mathcal{H}_{k_{-2}}$, does not depend on x_2

such that

$$g_5 = f_2 + f_{-2}$$

$$s = \|g_5\|_k^2 = \|f_2\|_{k_2}^2 + \|f_{-2}\|_{k_{-2}}^2$$

if we found
$$g_5$$
 s.t. $x_5 = g_5(x_1, x_2, x_3, x_4)$ using a kernel k .

$$k = k_2 + k_{-2}$$

Then we there is

- $f_2 \in \mathcal{H}_{k_2}$, depends on x_2
- $f_{-2} \in \mathcal{H}_{k_{-2}}$, does not depend on x_2

such that

$$g_5 = f_2 + f_{-2}$$

$$s = \|g_5\|_k^2 = \|f_2\|_{k_2}^2 + \|f_{-2}\|_{k_{-2}}^2$$

We can define the activation a_2 , which quantifies the contribution of x_2 to the signal data variance:

$$a_2 = \frac{\|f_2\|_{k_2}^2}{\|g_5\|_k^2}$$

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- 10: remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Caltech

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x_5 has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

- Linear kernel: $\frac{n}{n+s} = 0.81$
- Quadratic kernel: $\frac{n}{n+s} = 0.12$
- Nonlinear kernel: $\frac{n}{n+s} = 0.44$

Caltech

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

- Linear kernel: $\frac{n}{n+s} = 0.81$
- Quadratic kernel: $\frac{n}{n+s} = 0.12$
- Nonlinear kernel: $\frac{n}{n+s} = 0.44$

Caltech

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

oise

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Alg. for discovering the ancestors of x_5

- 1: Assign all other nodes as ancestors
- 2: Compute $\frac{n}{n+s}$ for each kernel
- 3: if No kernel has low noise then
- 4: x₅ has no ancestors
- 5: else
- 6: Pick first kernel with low noise
- 7: end if
- 8: while there are some ancestors left do
- 9: compute the contribution of each node
- remove the node that contributes the least
- 11: recompute $\frac{n}{n+s}$
- 12: end while
- 13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

Let N = 10 masses, for i = 0, ..., N - 1, their displacement from equilibrium x_i . We have:

$$\ddot{x}_{i} = \frac{c^{2}}{h^{2}}(x_{i+1} + x_{i-1} - 2x_{i})(1 + (x_{i+1} - x_{i-1})^{2})$$
(2)

Boundary condition: $x_{-1} = x_N = 0$

Figure 2: Nelson et al., 2018

$$\ddot{x}_{i} = \frac{c^{2}}{h^{2}}(x_{i+1} + x_{i-1} - 2x_{i})(1 + (x_{i+1} - x_{i-1})^{2})$$
(3)

We observe n = 1000 snapshots of $x_i, \dot{x}_i, \ddot{x}_i, i = 0, ..., 9$.

$$\ddot{x}_{i} = \frac{c^{2}}{h^{2}}(x_{i+1} + x_{i-1} - 2x_{i})(1 + (x_{i+1} - x_{i-1})^{2})$$
(3)

We observe n = 1000 snapshots of $x_i, \dot{x}_i, \ddot{x}_i, i = 0, ..., 9$. We recover the graph perfectly, even with uninformative prior:

A typical evolution of the noise (for \ddot{x}_7):

Figure 3: Left: evolution of noise-to-signal ratio . **Right**: Increment in noise $\left(\frac{n}{n+s}(q) - \frac{n}{n+s}(q-1)\right)$ for *q* the number of ancestors)

The dataset: Google's COVID data on France

Daily values of 31 variables during 500 days:

- Epidemiology dataset (new infections, cumulative deaths,...)
- Hospital dataset (number of admitted patients, patients in intensive care, etc.)
- Vaccine dataset (number of vaccinated individuals,...)
- Policy dataset (indicators related to government responses: school closures, lockdown measures, etc.)

Figure 4: Evolution of the noise-to-signal ratio when pruning ancestors for the cumulative number of hospitalized patients.

Caltech

Figure 5: Sachs et al, 2005

In this dataset, some variables are strongly dependent, while other dependencies are weaker. To tackle this disparity, we cluster the nodes:

In this dataset, some variables are strongly dependent, while other dependencies are weaker. To tackle this disparity, we cluster the nodes:

Figure 8: Comparison of recovered graph and protein signaling network

Contributions

We developed a Gaussian Process-based framework to recover functional dependencies between variables

- Works for any unlabelled dataset, with few assumptions
- interpretable
- Recovers known equations in toy examples
- Yields plausible results for real datasets

Computational Hypergraph Discovery, a Gaussian Process Framework for Connecting the Dots

Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo Baptista, Nicolas Rouquette, and Houman Owhadi *ArXiv, (2023). /abs/2311.17007*

ComputationalHypergraphDiscovery

🕏 pip install ComputationalHypergraphDiscovery

Blog post on my website