Computational Hypergraph Discovery

Théo Bourdais
January 18, 2024
California Institute of Technology

$$
\ddot{x}_{1}=\frac{c^{2}}{h^{2}}\left(x_{2}+x_{0}-2 x_{1}\right)\left(1+\left(x_{2}-x_{0}\right)^{3}\right)
$$

x_{1}	\ddot{x}_{1}	\ldots	\ddot{x}_{10}
0.45	0.66	\ldots	-0.23
\vdots	\vdots	\ddots	\vdots
-0.78	-0.12	\ldots	0.89

$$
\ddot{x}_{10}=\frac{c^{2}}{h^{2}}\left(x_{9}-2 x_{10}\right)\left(1-x_{9}^{3}\right)
$$

Computational Hypergraph Discovery, a Gaussian Process Framework for Connecting the Dots.
Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo Baptista,
Nicolas Rouquette, and Houman Owhadi
ArXiv, (2023). /abs/2311.17007

From Regression to Hypergraph discovery

The regression problem
Suppose $y=f(x)$, given samples $\left(X_{i}, Y_{i}\right)$ for $i=1, . ., N$, approximate f

Graph representation

Gaussian Process Regression

For $\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, . ., N$, approximate f s.t. $y=f(x)$.

Linear Ridge regression

Our approximation is a linear function $\tilde{f}(x)=\beta^{* T} x$ with

$$
\beta^{*}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } \sum_{i=1}^{N}\left|Y_{i}-\beta^{T} X_{i}\right|^{2}+\gamma\|\beta\|^{2}
$$

We know that, for $k(x, y)=x^{T} y$,

$$
\tilde{f} \in \mathcal{H}_{k}=\overline{\left\{\sum_{i} \alpha_{i} k\left(\cdot, z_{i}\right), \text { for some } z_{i}, \alpha_{i}\right\}}
$$

Gaussian Process Regression

For $\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, . ., N$, approximate f s.t. $y=f(x)$.
Quadratic Ridge regression
Our approximation is a quadratic function $\tilde{f}(x)=\beta^{* T} \psi(x)$, $\psi(x)=\left(1, x, x^{2}\right)$,

$$
\beta^{*}=\underset{\beta \in \mathbb{R}^{2 p+1}}{\arg \min } \sum_{i=1}^{N}\left|Y_{i}-\beta^{T} \psi\left(X_{i}\right)\right|^{2}+\gamma\|\beta\|^{2}
$$

We know that, for $k(x, y)=\psi(x)^{T} \psi(y)$,

$$
\tilde{f} \in \mathcal{H}_{k}=\overline{\left\{\sum_{i} \alpha_{i} k\left(\cdot, z_{i}\right), \text { for some } z_{i}, \alpha_{i}\right\}}
$$

Gaussian Process Regression

For $\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, . ., N$, approximate f s.t. $y=f(x)$.

Kernel Ridge regression

Our approximation is a function in a space $\mathcal{H}_{k}{ }^{1}$ defined by the kernel k.

$$
\tilde{f}=\underset{f \in \mathcal{H}_{k}}{\arg \min } \sum_{i=1}^{N}\left|Y_{i}-f\left(X_{i}\right)\right|^{2}+\gamma\|f\|^{2}
$$

We know that,

$$
\tilde{f} \in \mathcal{H}_{k}=\overline{\left\{\sum_{i} \alpha_{i} k\left(\cdot, z_{i}\right), \text { for some } z_{i}, \alpha_{i}\right\}}
$$

${ }^{1} \mathcal{H}_{k}$ is called the Reproducing Kernel Hilbert Space (RKHS) of k

From Regression to Hypergraph discovery

Computational Hypergraphs
A computational hypergraph is a graphical representation of a set of equations

$$
y=f(x)
$$

From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set of equations

$y=f(x)$

$$
y=f\left(x_{1}, x_{2}\right)
$$

From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set of equations

$y=f(x)$

$y=f\left(x_{1}, x_{2}\right)$

From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set of equations

$y=f(x)$

$y=f\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& y=f(x) \\
& z=g(y)
\end{aligned}
$$

The electrical circuit example ${ }^{2}$

$$
\begin{aligned}
i_{3} & =C\left(V_{3}\right) \frac{d V_{3}}{d t} \\
V_{2}-V_{3} & =R\left(i_{3}\right) i_{3} \\
-V_{2} & =L_{2}\left(i_{2}\right) \frac{d i_{2}}{d t} \\
V_{2}-V_{1} & =L_{1}\left(i_{1}\right) \frac{d i_{1}}{d t}
\end{aligned}
$$

${ }^{2}$ Owhadi, Computational Graph Completion.

The electrical circuit example

Since any set of equations can be represented as a Computational Hypergraph, we can obtain:

From Regression to Hypergraph discovery

Regression Given samples $Y_{i}=f\left(X_{i}\right)$ for $i=1, . ., N$, approximate f

From Regression to Hypergraph discovery

Regression Given samples $Y_{i}=f\left(X_{i}\right)$ for $i=1, . ., N$, approximate f

Hypergraph Completion Given the graph's structure and samples of its variables, approximate unknown edges, and missing data.

From Regression to Hypergraph discovery

Regression Given samples $Y_{i}=f\left(X_{i}\right)$ for $i=1, . ., N$, approximate f

Hypergraph Completion Given the graph's structure and samples of its variables, approximate unknown edges, and missing data.

Hypergraph discovery Given samples of the variables, find the structure of the graph.

Examples

- Brain networks

Figure 1: Image from Shu-Hsien Chu et al.

Objective: Discover functional dependencies between the activities of different brain regions.

Examples

Caltech

- Brain networks
- Economic networks

Figure 1: Image from Schweitzer et al.
Objective: Discover functional dependencies between economic markers of different banks

Examples

- Brain networks
- Economic networks
- Weather modelling
+ positive feedback for C3, C4 plants, negative feedback for CAM plants
* negative feedback above optimal values
\star negative feedback above optimal values

Figure 1: Image from Michael Ek.
Objective: Discover functional dependencies between the different variables

Existing methods

Causal inference and Probabilistic graphs

- Usually tackle a different problem (e.g., conditional independence or causality)
- Relies on strong assumptions (e.g., access to a distribution)

Existing methods

Causal inference and Probabilistic graphs

- Usually tackle a different problem (e.g., conditional independence or causality)
- Relies on strong assumptions (e.g., access to a distribution)

Sparse regressions

- Uses knowledge of sparse representations in a dictionary of functions
- Example: SINDY

Starting from an empty graph

The CHD problem

Given N samples of our variables, recover the functional dependencies between them (i.e., the structure of the graph).

Starting from an empty graph

(x)

(xt)
(xs
(xu)

The CHD problem

Given N samples of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, recover the functional dependencies (ie. the structure of the graph).

Our solution

Ancestors: If $x_{5}=f\left(x_{1}, x_{4}\right)$ for some f, x_{1}, x_{4} are ancestors of x_{5}.

Our solution

Ancestors: If $x_{5}=f\left(x_{1}, x_{4}\right)$ for some f, x_{1}, x_{4} are ancestors of x_{5}.
For each node, identify its ancestors

x_{1}

(xi)

(xu)

$$
x_{4}
$$

Our solution

Ancestors: If $x_{5}=f\left(x_{1}, x_{4}\right)$ for some f, x_{1}, x_{4} are ancestors of x_{5}.
For each node, identify its ancestors

x_{1}

(xt)

(xu)

$$
x_{4}
$$

Our solution

Ancestors: If $x_{5}=f\left(x_{1}, x_{4}\right)$ for some f, x_{1}, x_{4} are ancestors of x_{5}. For each node, identify its ancestors

Our solution

There is a function g_{5} s.t.

$$
x_{5}=g_{5}\left(x_{1}, \ldots, x_{4}\right)
$$

There are three questions:

- Does x_{5} have any ancestors?

Our solution

Caltech

x_{5} is not a function of x_{1}, \ldots, x_{4}

There is a function g_{5} s.t.

$$
x_{5}=g_{5}\left(x_{1}, \ldots, x_{4}\right)
$$

There is a function g_{5} s.t.

$$
x_{5}=g_{5}\left(x_{2}, x_{4}\right)
$$

There are three questions:

- Does x_{5} have any ancestors?
- If so, what is the minimum set of ancestors?

Our solution

Caltech

There is a function g_{5} s.t.

$$
x_{5}=g_{5}\left(x_{1}, \ldots, x_{4}\right)
$$

x_{5} is not a function of x_{1}, \ldots, x_{4}

There is a function g_{5} s.t.

$$
x_{5}=g_{5}\left(x_{2}, x_{4}\right)
$$

There are three questions:

- Does x_{5} have any ancestors?
- If so, what is the minimum set of ancestors?
- What kind of function is g_{5} ?

Does x_{5} have any ancestors?

Ancestors, samples gathered in X

Target samples gathered in Y

Ancestors, samples gathered in X

Target

samples gathered in Y

Let's see if there is g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a Gaussian Process (kernel k and noise variance γ):

$$
\begin{equation*}
g_{5}=\underset{f}{\arg \min }\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2} \tag{1}
\end{equation*}
$$

Does x_{5} have any ancestors?

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2}
$$

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
\begin{aligned}
& \quad g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2} \\
& s=\left\|g_{5}\right\|_{k}^{2} \\
& \text { (variance of data } \\
& \text { explained by model) }
\end{aligned}
$$

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2}
$$

$s=\left\|g_{5}\right\|_{k}^{2}$
(variance of data explained by model)

$$
\begin{gathered}
n=\frac{1}{\gamma}\left|g_{5}(X)-Y\right|^{2} \\
\text { (variance of data } \\
\text { explained by noise) }
\end{gathered}
$$

Does x_{5} have any ancestors?

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2}
$$

$s=\left\|g_{5}\right\|_{k}^{2}$
(variance of data explained by model)

$$
\begin{gathered}
n=\frac{1}{\gamma}\left|g_{5}(X)-Y\right|^{2} \\
\text { (variance of data } \\
\text { explained by noise) }
\end{gathered}
$$

The noise n comes from two sources:

- True noise from the data

Does x_{5} have any ancestors?

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
\begin{aligned}
& g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2} \\
& s=\left\|g_{5}\right\|_{k}^{2} \\
& \text { (variance of data } \\
& \text { explained by model) }
\end{aligned} \quad \begin{aligned}
& \text { (variance of data } \\
& \text { explained by noise) }
\end{aligned}
$$

The noise n comes from two sources:

- True noise from the data
- Unexplained data variance

Does x_{5} have any ancestors?

To see if this model correctly describes the data, we perform a nonlinear variance decomposition:

$$
\begin{aligned}
& g_{5}=\arg \min _{f}\|f\|_{k}^{2}+\frac{1}{\gamma}|f(X)-Y|^{2} \\
& s=\left\|g_{5}\right\|_{k}^{2} \\
& \text { (variance of data } \\
& \text { explained by model) }
\end{aligned} \quad \begin{aligned}
& \text { (variance of data } \\
& \text { explained by noise) }
\end{aligned}
$$

The noise n comes from two sources:

- True noise from the data
- Unexplained data variance
- Quantifies model misspecification

Does x_{5} have any ancestors?

Noise-to-signal ratio

$\frac{n}{n+s} \in[0,1]$, quantifies how much the data agrees with x_{5} having $x_{1}, . ., x_{4}$ as ancestors

- if $\frac{n}{n+s} \approx 0$: The model is well specified.
- if $\frac{n}{n+s} \approx 1$: The model is misspecified.

Does x_{5} have any ancestors?

Noise-to-signal ratio

$\frac{n}{n+s} \in[0,1]$, quantifies how much the data agrees with x_{5} having $x_{1}, . ., x_{4}$ as ancestors

- if $\frac{n}{n+s} \approx 0$: The model is well specified.
- if $\frac{n}{n+s} \approx 1$: The model is misspecified.

If $\frac{n}{n+s}<0.5, x_{5}$ has ancestors

If $\frac{n}{n+s}>0.5, x_{5}$ has no ancestors

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

$$
g_{5} \text { linear }
$$

Current kernel: Linear

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

$$
g_{5} \text { linear } \xrightarrow{\frac{n}{n+s}<0.5} \quad \begin{gathered}
x_{5} \text { has ancestors } \\
\begin{array}{l}
\text { and } g_{5} \\
\text { is linear }
\end{array}
\end{gathered}
$$

Current kernel: Linear

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

Current kernel: Quadratic

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

Current kernel: Quadratic

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

Current kernel: Nonlinear

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}+\prod_{i=1}^{n}\left(1+e^{-\left(x_{i}-y_{i}\right)^{2}}\right)
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

Current kernel: Nonlinear

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}+\prod_{i=1}^{n}\left(1+e^{-\left(x_{i}-y_{i}\right)^{2}}\right)
$$

Choosing the kernel

Is there a g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, . ., x_{4}\right)$? The kernel defines the set of functions we are searching g_{5} in.

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}+\prod_{i=1}^{n}\left(1+e^{-\left(x_{i}-y_{i}\right)^{2}}\right)
$$

To find the minimum set of ancestors, we will:

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
- Identify the least important potential ancestor

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
- Identify the least important potential ancestor
- Remove it from potential ancestors

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
- Identify the least important potential ancestor
- Remove it from potential ancestors
- Check that the data agrees

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
- Identify the least important potential ancestor
- Remove it from potential ancestors
- Check that the data agrees \Leftarrow we use $\frac{n}{n+s}$

To find the minimum set of ancestors, we will:

- Start with all nodes as potential ancestors
- Iteratively prune potential ancestors:
- Identify the least important potential ancestor
- Remove it from potential ancestors
- Check that the data agrees \Leftarrow we use $\frac{n}{n+s}$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.
Suppose we are using the quadratic kernel:

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.
Suppose we are using the quadratic kernel:

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Observe $k=k_{2}+k_{-2}$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.
Suppose we are using the quadratic kernel:

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Observe $k=k_{2}+k_{-2}$

- k_{2} depends on $x_{2}: k_{2}(x, y)=x_{2} y_{2}+x_{2}^{2} y_{2}^{2}+2 \sum_{j \neq 2} x_{2} x_{j} y_{2} y_{j}$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.
Suppose we are using the quadratic kernel:

$$
k(x, y)=1+\sum_{i=1}^{n} x_{i} y_{i}+\sum_{i, j=1}^{n} x_{i} x_{j} y_{i} y_{j}
$$

Observe $k=k_{2}+k_{-2}$

- k_{2} depends on $x_{2}: k_{2}(x, y)=x_{2} y_{2}+x_{2}^{2} y_{2}^{2}+2 \sum_{j \neq 2} x_{2} x_{j} y_{2} y_{j}$
- k_{-2} does not depend on $x_{2}: k_{-2}=k-k_{2}$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

$$
k=k_{2}+k_{-2}
$$

Then we there is

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

$$
k=k_{2}+k_{-2}
$$

Then we there is

- $f_{2} \in \mathcal{H}_{k_{2}}$, depends on x_{2}

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

$$
k=k_{2}+k_{-2}
$$

Then we there is

- $f_{2} \in \mathcal{H}_{k_{2}}$, depends on x_{2}
- $f_{-2} \in \mathcal{H}_{k-2}$, does not depend on x_{2}

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

$$
k=k_{2}+k_{-2}
$$

Then we there is

- $f_{2} \in \mathcal{H}_{k_{2}}$, depends on x_{2}
- $f_{-2} \in \mathcal{H}_{k-2}$, does not depend on x_{2}
such that

$$
\begin{aligned}
g_{5} & =f_{2}+f_{-2} \\
s & =\left\|g_{5}\right\|_{k}^{2}=\left\|f_{2}\right\|_{k_{2}}^{2}+\left\|f_{-2}\right\|_{k_{-2}}^{2}
\end{aligned}
$$

Identify the least important ancestor

if we found g_{5} s.t. $x_{5}=g_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ using a kernel k.

$$
k=k_{2}+k_{-2}
$$

Then we there is

- $f_{2} \in \mathcal{H}_{k_{2}}$, depends on x_{2}
- $f_{-2} \in \mathcal{H}_{k_{-2}}$, does not depend on x_{2}
such that

$$
\begin{aligned}
g_{5} & =f_{2}+f_{-2} \\
s & =\left\|g_{5}\right\|_{k}^{2}=\left\|f_{2}\right\|_{k_{2}}^{2}+\left\|f_{-2}\right\|_{k_{-2}}^{2}
\end{aligned}
$$

We can define the activation a_{2}, which quantifies the contribution of x_{2} to the signal data variance:

$$
a_{2}=\frac{\left\|f_{2}\right\|_{k_{2}}^{2}}{\left\|g_{5}\right\|_{k}^{2}}
$$

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
end if
8: while there are some ancestors left do
9: compute the contribution of each node

- Linear kernel: $\frac{n}{n+s}=0.81$
- Quadratic kernel: $\frac{n}{n+s}=0.12$
- Nonlinear kernel: $\frac{n}{n+s}=0.44$

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: x_{5} has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the

 ancestors of x_{5}1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

x_{5}

$$
a_{3}=0.44
$$

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

(x3)

The Algorithm

Alg. for discovering the ancestors of x_{5}

1: Assign all other nodes as ancestors
2: Compute $\frac{n}{n+s}$ for each kernel
3: if No kernel has low noise then
4: $\quad x_{5}$ has no ancestors
5: else
6: Pick first kernel with low noise
7: end if
8: while there are some ancestors left do
9: compute the contribution of each node
10: remove the node that contributes the least
11: recompute $\frac{n}{n+s}$
12: end while
13: using the evolution of $\frac{n}{n+s}$, choose the number of ancestors

The Fermi-Pasta-Ulam-Tsingou problem

Let $N=10$ masses, for $i=0, . ., N-1$, their displacement from equilibrium x_{i}. We have:

$$
\begin{equation*}
\ddot{x}_{i}=\frac{c^{2}}{h^{2}}\left(x_{i+1}+x_{i-1}-2 x_{i}\right)\left(1+\left(x_{i+1}-x_{i-1}\right)^{2}\right) \tag{2}
\end{equation*}
$$

Boundary condition: $x_{-1}=x_{N}=0$

Figure 2: Nelson et al., 2018

The Fermi-Pasta-Ulam-Tsingou problem

$$
\begin{equation*}
\ddot{x}_{i}=\frac{c^{2}}{h^{2}}\left(x_{i+1}+x_{i-1}-2 x_{i}\right)\left(1+\left(x_{i+1}-x_{i-1}\right)^{2}\right) \tag{3}
\end{equation*}
$$

We observe $n=1000$ snapshots of $x_{i}, \dot{x}_{i}, \ddot{x}_{i}, i=0, . ., 9$.

The Fermi-Pasta-Ulam-Tsingou problem

$$
\begin{equation*}
\ddot{x}_{i}=\frac{c^{2}}{h^{2}}\left(x_{i+1}+x_{i-1}-2 x_{i}\right)\left(1+\left(x_{i+1}-x_{i-1}\right)^{2}\right) \tag{3}
\end{equation*}
$$

We observe $n=1000$ snapshots of $x_{i}, \dot{x}_{i}, \ddot{x}_{i}, i=0, . ., 9$. We recover the graph perfectly, even with uninformative prior:

The Fermi-Pasta-Ulam-Tsingou problem

A typical evolution of the noise (for \ddot{x}_{7}):

Figure 3: Left: evolution of noise-to-signal ratio . Right: Increment in noise $\left(\frac{n}{n+s}(q)-\frac{n}{n+s}(q-1)\right.$ for q the number of ancestors)

COVID dataset

The dataset: Google's COVID data on France
Daily values of 31 variables during 500 days:

- Epidemiology dataset (new infections, cumulative deaths,...)
- Hospital dataset (number of admitted patients, patients in intensive care, etc.)
- Vaccine dataset (number of vaccinated individuals,...)
- Policy dataset (indicators related to government responses: school closures, lockdown measures, etc.)

COVID dataset

COVID dataset

Caltech

COVID dataset

COVID dataset

Caltech

COVID dataset

Figure 4: Evolution of the noise-to-signal ratio when pruning ancestors for the cumulative number of hospitalized patients.

Figure 5: Sachs et al, 2005

The Sachs dataset

In this dataset, some variables are strongly dependent, while other dependencies are weaker. To tackle this disparity, we cluster the nodes:

The Sachs dataset

In this dataset, some variables are strongly dependent, while other dependencies are weaker. To tackle this disparity, we cluster the nodes:

Figure 8: Comparison of recovered graph and protein signaling network

Conclusion

Contributions
We developed a Gaussian Process-based framework to recover functional dependencies between variables

- Works for any unlabelled dataset, with few assumptions
- interpretable
- Recovers known equations in toy examples
- Yields plausible results for real datasets

Questions ?

Computational Hypergraph Discovery, a Gaussian Process Framework for Connecting the Dots
Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo Baptista, Nicolas Rouquette, and Houman Owhadi ArXiv, (2023). /abs/2311.17007

C) ComputationalHypergraphDiscovery
pip install ComputationalHypergraphDiscovery

Blog post on my website

