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From Regression to Hypergraph discovery

The regression problem

Suppose y = f (x), given samples (Xi ,Yi ) for i = 1, ..,N,

approximate f

X

Y

Graph representation

x y
f

2



Gaussian Process Regression

For (Xi ,Yi ) ∈ Rp × R, i = 1, ..,N, approximate f s.t. y = f (x).

Linear Ridge regression

Our approximation is a linear function f̃ (x) = β∗T x with

β∗ = argmin
β∈Rp

N∑
i=1

|Yi − βTXi |2 + γ∥β∥2

We know that, for k(x , y) = xT y ,

f̃ ∈ Hk = {
∑
i

αik(·, zi ), for some zi , αi}
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Gaussian Process Regression

For (Xi ,Yi ) ∈ Rp × R, i = 1, ..,N, approximate f s.t. y = f (x).

Quadratic Ridge regression

Our approximation is a quadratic function f̃ (x) = β∗Tψ(x),

ψ(x) = (1, x , x2),

β∗ = argmin
β∈R2p+1

N∑
i=1

|Yi − βTψ(Xi )|2 + γ∥β∥2

We know that, for k(x , y) = ψ(x)Tψ(y),

f̃ ∈ Hk = {
∑
i

αik(·, zi ), for some zi , αi}

3



Gaussian Process Regression

For (Xi ,Yi ) ∈ Rp × R, i = 1, ..,N, approximate f s.t. y = f (x).

Kernel Ridge regression

Our approximation is a function in a space Hk
1 defined by the

kernel k .

f̃ = argmin
f ∈Hk

N∑
i=1

|Yi − f (Xi )|2 + γ∥f ∥2

We know that,

f̃ ∈ Hk = {
∑
i

αik(·, zi ), for some zi , αi}

1Hk is called the Reproducing Kernel Hilbert Space (RKHS) of k

3



From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set

of equations

x y
f

y = f (x)
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From Regression to Hypergraph discovery

Computational Hypergraphs

A computational hypergraph is a graphical representation of a set

of equations

x y
f

y = f (x)

x1

x2

yf

f

y = f (x1, x2)

x y z
f g

y = f (x)

z = g(y)

4



The electrical circuit example2

i1 + i3 = i2

i3 = C (V3)
dV3

dt

V2 − V3 = R(i3)i3

−V2 = L2(i2)
di2
dt

V2 − V1 = L1(i1)
di1
dt

2Owhadi, Computational Graph Completion.
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The electrical circuit example

Since any set of equations can be represented as a Computational

Hypergraph, we can obtain:
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From Regression to Hypergraph discovery

Regression Given samples Yi = f (Xi ) for i = 1, ..,N, approximate f

x y
f

Hypergraph Completion Given the graph’s structure and samples of its variables,

approximate unknown edges, and missing data.

x1 x2 x3

x4 x5

f1,2

f2,3

f4,1 f2,4 f3,5

Hypergraph discovery Given samples of the variables, find the structure of the graph.

x1 x2 x3

x4 x5
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Examples

• Brain networks

• Economic networks

• Weather modelling

Figure 1: Image from Shu-Hsien Chu

et al.

Objective: Discover functional dependencies between the

activities of different brain regions.
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Examples

• Brain networks

• Economic networks

• Weather modelling

Figure 1: Image from Schweitzer et al.

Objective: Discover functional dependencies between economic

markers of different banks
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Examples

• Brain networks

• Economic networks

• Weather modelling

Figure 1: Image from Michael Ek.

Objective: Discover functional dependencies between the different

variables

8



Existing methods

Causal inference and Probabilistic graphs

• Usually tackle a different problem (e.g., conditional

independence or causality)

• Relies on strong assumptions (e.g., access to a distribution)

Sparse regressions

• Uses knowledge of sparse representations in a dictionary of

functions

• Example: SINDY
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Starting from an empty graph

x1

x2

x3

x4

x5

The CHD problem

Given N samples of our variables, recover the functional

dependencies between them (i.e., the structure of the graph).

The CHD problem

Given N samples of x1, x2, x3, x4, x5, recover the functional

dependencies (i.e. the structure of the graph).
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Starting from an empty graph

x1

x2

x3

x4

x5

The CHD problem

Given N samples of x1, x2, x3, x4, x5, recover the functional

dependencies (i.e. the structure of the graph).
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Our solution

Ancestors: If x5 = f (x1, x4) for some f , x1, x4 are ancestors of x5.
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Our solution

x5

x1

x2

x3

x4

x5 is not a function of

x1, ..., x4

or

x5

x1

x2

x3

x4

g5
g5
g5
g5

There is a function g5 s.t.

x5 = g5(x1, ..., x4)

or

x5

x1

x2

x3

x4

g5

g5

There is a function g5 s.t.

x5 = g5(x2, x4)

There are three questions:

• Does x5 have any ancestors?

• If so, what is the minimum set of ancestors?

• What kind of function is g5?
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Does x5 have any ancestors?

x5
Target

samples gathered in Y

x1

x2

x3

x4

Ancestors,

samples gathered in X

Let’s see if there is g5 s.t. x5 = g5(x1, x2, x3, x4) using a Gaussian

Process (kernel k and noise variance γ):

g5 = argmin
f

∥f ∥2k +
1

γ
|f (X )− Y |2 (1)
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Does x5 have any ancestors?

To see if this model correctly describes the data, we perform a

nonlinear variance decomposition:

g5 = argminf ∥f ∥2k+
1
γ |f (X )− Y |2

s = ∥g5∥2k
(variance of data

explained by model)

n = 1
γ |g5(X ) − Y |2

(variance of data

explained by noise)

The noise n comes from two sources:

• True noise from the data
• Unexplained data variance

• Quantifies model misspecification
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Does x5 have any ancestors?

Noise-to-signal ratio

n
n+s ∈ [0, 1], quantifies how much the data agrees with x5 having

x1, .., x4 as ancestors

• if n
n+s ≈ 0: The model is well specified.

• if n
n+s ≈ 1: The model is misspecified.

If n
n+s < 0.5, x5 has ancestors

x5

x1

x2

x3

x4

or

If n
n+s > 0.5, x5 has no ancestors

x5

x1

x2

x3

x4
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Choosing the kernel

Is there a g5 s.t. x5 = g5(x1, .., x4) ? The kernel defines the set of

functions we are searching g5 in.

Smooth Functions

Quadratic Functions

Linear Functions

Current kernel:

g5 linear

x5 has ancestors

and g5
is linear

n
n+s

< 0.5

g5 quadratic

n
n+s

> 0.5

x5 has ancestors

and g5
is quadratic

n
n+s

< 0.5

g5 smooth

n
n+s

> 0.5

x5 has ancestors

and g5
is smooth

n
n+s

< 0.5

x5 has no ancestor

n
n+s

> 0.5
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what is the minimum set of ancestors?

To find the minimum set of ancestors, we will:

• Start with all nodes as potential ancestors

• Iteratively prune potential ancestors:

• Identify the least important potential ancestor

• Remove it from potential ancestors

• Check that the data agrees

⇐ we use n
n+s

17
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Identify the least important ancestor

if we found g5 s.t.x5 = g5(x1, x2, x3, x4) using a kernel k.

Suppose we are using the quadratic kernel:

k(x , y) = 1 +
n∑

i=1

xiyi +
n∑

i ,j=1

xixjyiyj

Observe k = k2 + k−2

• k2 depends on x2: k2(x , y) = x2y2 + x22y
2
2 + 2

∑
j ̸=2 x2xjy2yj

• k−2 does not depend on x2: k−2 = k − k2

18
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18



Identify the least important ancestor

if we found g5 s.t.x5 = g5(x1, x2, x3, x4) using a kernel k.

Suppose we are using the quadratic kernel:

k(x , y) = 1 +
n∑

i=1

xiyi +
n∑

i ,j=1

xixjyiyj

Observe k = k2 + k−2

• k2 depends on x2: k2(x , y) = x2y2 + x22y
2
2 + 2

∑
j ̸=2 x2xjy2yj

• k−2 does not depend on x2: k−2 = k − k2

18



Identify the least important ancestor

if we found g5 s.t. x5 = g5(x1, x2, x3, x4) using a kernel k .

k = k2 + k−2

Then we there is

• f2 ∈ Hk2 , depends on x2

• f−2 ∈ Hk−2 , does not depend on x2

such that

g5 = f2 + f−2

s = ∥g5∥2k = ∥f2∥2k2 + ∥f−2∥2k−2

We can define the activation a2, which quantifies the contribution

of x2 to the signal data variance:

a2 =
∥f2∥2k2
∥g5∥2k
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The Algorithm

Alg. for discovering the

ancestors of x5

1: Assign all other nodes as ancestors

2: Compute n
n+s

for each kernel

3: if No kernel has low noise then

4: x5 has no ancestors

5: else

6: Pick first kernel with low noise

7: end if

8: while there are some ancestors left do

9: compute the contribution of each

node

10: remove the node that contributes

the least

11: recompute n
n+s

12: end while

13: using the evolution of n
n+s

, choose the

number of ancestors

x1

x2

x3

x4

x5
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The Fermi-Pasta-Ulam-Tsingou problem

Let N = 10 masses, for i = 0, ..,N − 1, their displacement from

equilibrium xi . We have:

ẍi =
c2

h2
(xi+1 + xi−1 − 2xi )(1 + (xi+1 − xi−1)

2) (2)

Boundary condition: x−1 = xN = 0

Figure 2: Nelson et al., 2018
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The Fermi-Pasta-Ulam-Tsingou problem

ẍi =
c2

h2
(xi+1 + xi−1 − 2xi )(1 + (xi+1 − xi−1)

2) (3)

We observe n = 1000 snapshots of xi , ẋi , ẍi , i = 0, .., 9.

We recover

the graph perfectly, even with uninformative prior:
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The Fermi-Pasta-Ulam-Tsingou problem

A typical evolution of the noise (for ẍ7):

Figure 3: Left: evolution of noise-to-signal ratio . Right: Increment in

noise ( n
n+s (q)−

n
n+s (q − 1) for q the number of ancestors)
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COVID dataset

The dataset: Google’s COVID data on France

Daily values of 31 variables during 500 days:

• Epidemiology dataset (new infections, cumulative deaths,...)

• Hospital dataset (number of admitted patients, patients in

intensive care, etc.)

• Vaccine dataset (number of vaccinated individuals,...)

• Policy dataset (indicators related to government responses:

school closures, lockdown measures, etc.)
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COVID dataset
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COVID dataset
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COVID dataset
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COVID dataset
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COVID dataset

Figure 4: Evolution of the noise-to-signal ratio when pruning ancestors

for the cumulative number of hospitalized patients.
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The Sachs dataset

Figure 5: Sachs et al, 2005 30



The Sachs dataset

In this dataset, some variables are strongly dependent, while other

dependencies are weaker. To tackle this disparity, we cluster the

nodes:

RafMek

Plcg

PIP2

PIP3

Erk

Akt

PKA

PKC

P38

Jnk

Figure 6: Recovered graph after clustering
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The Sachs dataset

In this dataset, some variables are strongly dependent, while other

dependencies are weaker. To tackle this disparity, we cluster the

nodes:

RafMek

Plcg

PIP2

PIP3

Erk

Akt

PKA

PKC

P38

Jnk

Figure 7: Recovered graph after clustering
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The Sachs dataset

Figure 8: Comparison of recovered graph and protein signaling network
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Conclusion

Contributions

We developed a Gaussian Process-based framework to recover

functional dependencies between variables

• Works for any unlabelled dataset, with few assumptions

• interpretable

• Recovers known equations in toy examples

• Yields plausible results for real datasets
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Questions ?

Computational Hypergraph Discovery, a

Gaussian Process Framework for Connecting

the Dots

Théo Bourdais, Pau Batlle, Xianjin Yang, Ricardo

Baptista, Nicolas Rouquette, and Houman Owhadi

ArXiv, (2023). /abs/2311.17007

ComputationalHypergraphDiscovery

pip install ComputationalHypergraphDiscovery

Blog post on my website
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https://github.com/TheoBourdais/ComputationalHypergraphDiscovery
https://theobourdais.github.io/posts/2023/11/CHD/

