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Algorithms are the engine for reproducible problem-solving. We present a

framework automating algorithm discovery by conceptualizing them as sequences

of operations, represented as tokens. These computational tokens are chained us-

ing a grammar, enabling the formation of increasingly sophisticated procedures.

Our ensemble Monte Carlo tree search (MCTS) guided by reinforcement learn-

ing (RL) explores token chaining and drives the creation of new tokens. This

methodology rediscovers, improves, and generates new algorithms that substan-

tially outperform existing methods for strongly NP-hard combinatorial optimiza-

tion problems and foundational quantum computing approaches such as Grover’s

and Quantum Approximate Optimization Algorithm. Operating at the computa-

tional rather than code-generation level, our framework produces algorithms that

can be tailored specifically to problem instances, not merely classes.

Although major algorithms continue to be introduced at a rapid pace (see Fig. 1), the rate of

this growth appears to slow when adjusted for population size. Moreover, the discovery of new

algorithms predominantly remains reliant upon trial-and-error methods, intuition, and informed

guesswork. While various strategies have attempted to systematize this discovery process, these
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Figure 1: Historical timeline of key algorithmic breakthroughs (full list in supplementary).

approaches typically remain problem-specific, as exemplified by fast solver design (1) or the de-

velopment of matrix multiplication algorithms (2). Alternatively, some approaches adopt direct

code-generation paradigms such as AlphaEvolve (3) in which ensembles of large language models

(LLMs) serve as coding agents. These are often integrated with evaluation metrics and evolutionary

strategies, such as genetic algorithms, to iteratively refine large code segments (4–6). AlphaEvolve

and other existing methods produce singular solutions that are applied to every instance within a

problem class. Therefore, (i) they are constrained by the no free lunch theorem (7), that essentially

states that no single algorithm can universally outperform all others across every possible prob-

lem instance; and (ii) algorithms that exploit instance specific structure are key for the building

performant solutions to important problems. In this paper, we address this issue and introduce

a significantly more informed (and thereby efficient) approach by first tokenizing the computing

process itself, an abstraction crucial for simplifying and generalizing complex algorithmic rep-

resentations, which we term computational language processing (CLP). Next, we introduce a RL

ensemble variant of MCTS to efficiently explore the space of grammatically consistent token chains.

Contrary to the prevalent paradigm, where an algorithm is designed for an entire class of problems

(e.g., the QAP) and uniformly applied across all instances, our framework is instance-adaptive

and performs reinforcement learning directly at the computational level of each specific prob-

lem instance. As a result, our approach can generate both problem class algorithms and distinct,

instance-specific algorithms finely tailored to the nuances of individual problems. We demonstrate

the effectiveness of this approach in algorithmic discovery through applications to the Quadratic
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Assignment Problem (a generic strongly NP-hard combinatorial optimization problem to which

many other NP-hard problems can be reduced, see supplementary text Sec. 2.2), the quantum

(unstructured) search problem and Quantum Approximate Optimization Algorithm. Crucially, this

high-level framework not only considerably simplifies the conceptualization and generalization of

complex algorithms and integrates naturally with downstream code-generation methods, but it also

generalizes naturally to broader domains, including systems engineering (the design of complex

physical systems/processes) and mathematical discovery.

Figure 2: (a) We conceptualize an algorithm as a chain of elementary computational steps (prim-

itives/tokens), chained with a precise grammar/syntax. (b) Starting with elementary tokens, we

discover new tokens and algorithms with ensemble MCTS + RL as a babbling mechanism to search

over the tree of all possible strings of tokens. Edges represent primitives/tokens and nodes the

ensemble of computational state variables sampled from the string of (possibly stochastic) tokens

leading that node.

Computational Language Processing. Our framework conceptualizes an algorithm as “a se-

quence of finite computational steps that transform an input into a desired output” (8). Since these

computational steps naturally correspond to computational graphs (9,10), the problem of discover-

ing an algorithm reduces to discovering a computational graph whose structure can be represented

as a sequence of known elementary computational graphs/steps which we call primitives. Draw-

ing a parallel between computational primitives and letters, we view an algorithm as a sentence

(Fig. 2(a)), and algorithm discovery as learning to speak in a computational language. This per-

spective motivates a language-based learning approach, abstracting away from domain-specific
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tasks to focus on chaining arbitrary computational steps. This enables algorithm discovery across

diverse problem domains with a unified methodology. Therefore, analogous to natural language,

the set of primitives serves as the the alphabet for our computational language. The discovery of

turbo codes (which have transformed digital communications by enabling efficient and reliable

data transmission close to the theoretical maximum) illustrates the idea of composing primitives

to generate algorithms precisely. Indeed, as reflected by Claude Berrou and Alain Glavieux, turbo

codes emerged as “the result of an empirical, painstaking construction of a global coding/decoding

scheme, using existing bricks that had never been put together in this way before” (11). Unlike

natural language, no large dataset of training examples exist for our task. To address this our frame-

work alternates between two complementary phases (see Fig. 2(a), 3(a), and 4), (i) an ensemble

MCTS and RL paradigm, to automate and scale the exploration of chains of computational steps. It

composes elementary primitives into progressively more complex operations (analogous to forming

words in natural language) which we term tokens. (ii) Incrementally expanding our computational

vocabulary by merging the most efficient strings of tokens, inspired by methods such as Byte-Pair

Encoding (BPE) (12).

Ensemble Monte Carlo tree search with reinforcement learning. To explore and refine the

chaining of computational primitives, we integrate MCTS (13) with trained policy and value

neural networks. MCTS incrementally builds search trees using random sampling and targeted

exploration, efficiently focusing on promising moves without exhaustively searching the entire

tree. Combined with deep neural networks and self-play, this strategy reached breakthroughs like

AlphaGo’s superhuman performance in Go and AlphaZero’s rapid dominance in chess (14–16). Our

approach is a new ensemble variant of the AlphaZero reinforcement learning framework as detailed

in Sec. 1.1 of the supplementary information. In this variant, edges correspond to computational

actions represented by tokens, and each node maintains an ensemble of computational states

derived from the sequence of tokens leading to that node (Fig. 2(b)). The framework is specifically

designed to handle stochastic operations such as random initializations (e.g., random permutations)

or stochastic computational operations, as they are key building blocks for designing efficient

algorithms. In addition to token sequences, Boltzmann-weighted averages (akin to a softmax) of

computational states are computed and serve as input features for the policy and value neural
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networks. Tailored to algorithm discovery, our approach learns to chain tokens into algorithms

dynamically tailored to specific problem instances. Furthermore, when a single algorithm proves

effective across all instances of a problem class, the learned policy tends to converge toward that

solution. This policy convergence enables the discovery of general-purpose algorithms applicable

to entire classes of problems when possible.

Figure 3: (a) Algorithmic Byte-Pair encoding to increase vocabulary by creating new tokens from

old ones (b) Low-level primitives (c) Fast Approximate QAP (FAQ) algorithm rediscovery as a

chain of 3 primitives (gradient, linear sum assignment, convex combination of doubly stochastic

relaxation).

Algorithmic byte-pair encoding and learning higher-complexity tokens. The choice of prim-

itives, i.e. the computational alphabet in CLP, directly governs the trade-off between expressivity

and complexity of the search space. Imposing strong prior assumptions on the structure or choice

of primitives introduces a significant bias towards the form of algorithm that is ultimately dis-

covered. Conversely, while low-level primitives such as arithmetic operations or machine code

offer maximum granularity, they also dramatically enlarge the search space, making discovery in-

tractable. As a result, coding agents based on LLMs rely heavily on supervised pretraining to serve

as frameworks for algorithm discovery. This inherently biases them towards existing algorithms

and known patterns. Even when fine-tuned using RL, the often-used KL penalty limits exploration

by anchoring updates to the pretrained distribution. This results in distributional shifts rather than
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genuine capability expansion (17, 18). Additionaly, the vast parameter count of LLMs makes RL-

based exploration at inference computationally prohibitive. In contrast, we define a discrete set of

computational tokens, allowing us to precisely control the amount of prior structure and eliminate

the need for pretraining. This enables unbounded exploration driven solely by RL, while drastically

reducing model size.

However, a fixed, manually designed vocabulary may constrain expressivity and necessitate long

token sequences to represent complex behaviors, thereby increasing the search space and compu-

tational burden. To address this, we draw inspiration from NLP again to automatically discover

tokens most adapted to the task at hand. Since we view algorithm discovery as learning to speak

a computational language, RL rollouts can be viewed as “babbling”, i.e. learning speech through

trial and error. We collect these rollouts to construct a corpus of effective computational sequences

for the current problem. Using this corpus, we apply a variant of the BPE algorithm, termed

Algorithmic Byte-Pair Encoding (A-BPE), to iteratively merge frequently co-occurring token se-

quences into new, higher-level tokens. These tokens represent higher-level computational steps

and can themselves be recursively composed, supporting hierarchical abstraction. This enables the

iterative construction of complex algorithms and a dynamic combination of low and high-level

representations (see Fig.3(a), Fig. 4, and Sec.1.2.4–1.2.1).

The Quadratic Assignment Problem (QAP). The QAP is a particularly important combinato-

rial optimization problem that arises in a wide variety of settings. Often regarded as one of the

most challenging NP-hard problems (19), that appears in supply chain optimization, where it is

used to strategically place facilities in order to minimize item transit time or maximize supply

chain throughput. Other applications include airport design, data center optimization, and very

large-scale integrated circuit design. For further discussion on the QAP and its importance, see

supplementary text Sec. 2.3). Due to its combinatorial search space, and strongly NP-hard complex-

ity (constant-factor approximations are NP-hard) even moderate sized problems (e.g. size 𝑛 = 20)

can be computationally challenging. Moreover, the QAP generalizes several classical optimization

problems, for instance, setting 𝐹𝑖, 𝑗 = 1, symmetric distances with 𝐷𝑖, 𝑗 = 𝐷 𝑗 ,𝑖 ≥ 0 and 𝐷𝑖,𝑖 = 0, and

𝐶𝑖, 𝑗 = 0 in the QAP loss (Eqn. 1) simplifies the QAP to the Traveling Salesman Problem (TSP).

Similarly, setting 𝐶 = 0 and 𝐷𝑖, 𝑗 ∈ {0, 1} reduces the QAP to the Graph Matching Problem (20).
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Figure 4: Emergence of dominant strategies as difficulty increases: (left-axis) Frequencies of

occurrence of dominant strategy and finding the global optimum. (right-axis) Average relative

optimality gap, (L −minL)/minL. (x-axis) Iterations, with a round of BPE every 10 iterations is

marked by a vertical dotted line. CLP discovers increasingly more complex and effective algorithms,

with identifiable dominant strategies and instance specific adaptations, to reach a high success rate.

Details in 1.2.1

Developing an automated framework that generates instance-adapted algorithms that outperform

state-of-the-art solvers would, therefore, have significant industrial and scientific impact. To for-

mally define the QAP, let 𝐷, 𝐹, and 𝐶 be 𝑛 × 𝑛 matrices with arbitrary real-valued entries, where

𝑛 ≥ 2. Let Π𝑛 be the set of all permutations of {1, 2, . . . , 𝑛}, the objective of the QAP, is to minimize

min𝜋∈Π𝑛
L(𝜋) where,

L(𝜋) :=
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐹𝑖, 𝑗𝐷𝜋(𝑖),𝜋( 𝑗) +
𝑛∑︁
𝑖=1

𝐶𝑖,𝜋(𝑖) = Tr
[
𝐹𝑃𝐷𝑇𝑃𝑇 + 𝐶𝑃𝑇

]
, (1)

and 𝑃 ∈ P𝑛 is a 𝑛 × 𝑛 permutation matrix associated with 𝜋.

Primitives, tokens and Algorithmic Byte-Pair Encoding for the QAP. To illustrate the concepts

of primitives and tokens, we first describe selected primitives commonly employed for solving the
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QAP, into which most existing algorithms naturally decompose (Fig. 3(a)–(c)). A representative

subset of these primitives operates on a relaxation of the QAP from permutation matrices to the larger

set of 𝑛×𝑛 doubly stochastic matrices, denoted by P̃𝑛. A matrix 𝑃 ∈ P̃𝑛 satisfies 𝑃𝑖, 𝑗 ∈ [0, 1] for all

entries, with row and column sums equal to one, i.e.,
∑

𝑗 𝑃𝑖, 𝑗 = 1 and
∑

𝑖 𝑃𝑖, 𝑗 = 1. By extending the

loss functionL to this relaxed domain, we obtain its gradient with respect to the matrix 𝑃 as follows:

∇L(𝑃) = 𝐹𝑃𝐷⊤ +𝐹⊤𝑃𝐷 +𝐶. We introduce another fundamental primitive, interpolation between

two doubly stochastic matrices, defined by: 𝑃 ← (1−𝛾)𝑄 + 𝛾 𝑆, where𝑄, 𝑆 ∈ P̃𝑛 and 𝛾 ∈ [0, 1],

resulting in another doubly stochastic matrix. Additionally, given an arbitrary cost matrix𝐶 ∈ R𝑛×𝑛,

we consider the Linear Sum Assignment (LSA) problem, which seeks a permutation 𝜋 minimizing

the total assignment cost
∑𝑛

𝑖=1 𝐶𝑖,𝜋(𝑖) . The Hungarian (or Kuhn–Munkres) algorithm (21,22) solves

this problem optimally in 𝑂 (𝑛3) time. We denote the optimal permutation matrix solving the LSA

defined by 𝐶 as: LSA(𝐶) := argmin𝑃∈P𝑛
∑𝑛

𝑖, 𝑗=1 𝐶𝑖, 𝑗𝑃𝑖, 𝑗 . Although we use the LSA algorithm as

a primitive, in this case, we show how these algorithms can themselves be rediscovered using low-

level primitives (see Fig. 4). Additional primitives are detailed in Section 2.5 of the supplementary

information. To illustrate vocabulary generation and token formation, consider the Frank–Wolfe

algorithm’s update step for the QAP:

𝑃𝑘+1 = (1 − 𝛾𝑘 )𝑃𝑘 + 𝛾𝑘 LSA(∇L(𝑃𝑘 )).

This update naturally decomposes into an interpolation token and a token representing the LSA op-

eration applied to the gradient, each corresponding to previously defined computational primitives

(Fig. 3(b,c)). Such decompositions demonstrate the incremental creation and complexity building

inherent in our computational language framework. Figure 4 further demonstrates the practical

application of our A-BPE strategy (see Fig. 3(a)) for token construction in the context of the QAP.

Starting from a modest initial set of 8 elementary primitives (see Sec. 1.2.1), the CLP approach

leveraging A-BPE progressively discovers increasingly sophisticated and effective algorithms (to-

kens), emerging as dominant (most frequently employed) strategies (i.e., strings of tokens) over

multiple rounds. For example, the Frank-Wolfe (FW) algorithm emerges as a dominant string of

computational tokens. The resulting tokens exhibit both a recognizable dominant strategy and

instance-specific adaptations, ultimately achieving a high success rates (see Sec. 1.2.1 for details).
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Figure 5: Optimality gap for different methods, with median, 10th and 90th quantile. On CQAP,

CLP achieves global optimum on all tested instances.

Results on the QAP. Algorithm discovery can be tackled at different levels of problem complex-

ity, from hyperparameter tuning to heuristics design. To explore this spectrum, we evaluate our

method on two benchmark generators, the composite QAP (CQAP) (23) and the significantly more

challenging Palubeckis QAP (PQAP) (24), as well as the QAPLIB library of challenge problems.

In three different experiments, CLP is provided with a base set of tokens and learns to compose

them into increasingly sophisticated algorithms using a lightweight Transformer model guided by

an ensemble variant of MCTS. With this approach, we obtain the following results: (i) Using well

established algorithms as computational tokens, such as FW or 2-OPT (see Sec. 2.5 for the entire

list of tokens), our algorithm learns to chain these strategies to beat state-of-the-art meta-heuristics

and the mixed-integer solver Gurobi. This performance is achieved across a range of problem sizes

and instances with varying underlying structure, while keeping the number of objective evaluations

constant. As shown in figure 5, the resulting policies achieve optimal solutions in 100% of tested

instances from CQAP for 𝑛 ≤ 80, ≤ 1% optimality gap on PQAP for 𝑛 ≤ 80 and beats or equals all

other tested methods in 389 out of 390 tested PQAP and CQAP instances. On previously unseen

QAPLIB examples, CLP generalizes to new problem structures, solving 41% of QAPLIB instances

to optimality and beating or equaling all other tested methods in 94.8% of QAPLIB instances.

See 1.2.3 for experimental details. (ii) Starting from a minimal set of primitive operations such as

identity operations, gradient steps, negation, Hungarian assignment (to map continuous matrices

to permutation matrices), and simple control-flow tokens, CLP expands the library to 100+ com-
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posite tokens using A-BPE (12). After just three refinement rounds (of A-BPE and neural network

retraining) it rediscovers many high-level tokens including 𝑘-OPT and FW. It also learns to perform

random restarts for FW (see Fig. S1), enabling it to reach optimality in over 90% of cases for CQAP

instances of size 40, surpassing what standard implementations of FW achieve. See section 1.2.1.

(iii) When focusing on step-size optimization, CLP discovers a new cyclic step-size schedule that

significantly outperforms the standard step-size schedule implemented within the scipy software

package (25) (see Fig. S1; see section 1.2.2).

In short, CLP demonstrates effectiveness across all levels of algorithmic design: improving per-

formance at a high-level, rediscovering known algorithms augmented with novel low-level restarting

strategies, and optimizing associated parameters. CLP outperforms all baselines—including com-

mercial solvers such as Gurobi—while scaling quadratically and providing fast answers on large

problem instances.

The Quantum Search Problem. Consider a finite, unstructured setX (with no inherent ordering

or other distinguishing characteristics) containing 𝑁 elements, indexed by the set {0, 1, . . . , 𝑁 −1}.

Among the elements of X, there is exactly one marked or target element 𝑥∗ ∈ X. The task is to

identify the marked element 𝑥∗ by querying an oracle (black-box) function 𝑓 : X → {0, 1}, where

𝑓 (𝑥) = 1 if 𝑥 = 𝑥∗ and 𝑓 (𝑥) = 0 otherwise. This oracle provides no additional information about

the location of the target beyond the binary responses to queries. The objective is to determine

the marked element 𝑥∗ efficiently, minimizing the number of queries to the oracle function 𝑓 . In

the quantum setting, the oracle is represented by a unitary operator 𝑈 𝑓 , acting on computational

basis states |𝑥⟩ as 𝑈 𝑓 |𝑥⟩ = (−1) 𝑓 (𝑥) |𝑥⟩. This oracle operator flips the sign of the amplitude

corresponding to the marked state. Classically, since the set X is unstructured, the optimal solution

is an exhaustive linear search whose complexity isO(𝑁). Using the Quantum Oracle Representation,

quantum computing leverages principles of superposition and amplitude amplification to achieve

a provable quantum advantage. Grover’s algorithm (26) accomplishes this, solving the quantum

search problem in approximately 𝜋
4
√
𝑁 oracle queries with a high probability of success. The

quantum search problem is a cornerstone of quantum algorithmic theory because it: (a) Clearly

demonstrates a quantum computational speed-up. (b) Has significant implications for cryptography,

specifically affecting the computational security of cryptographic primitives reliant on brute-force
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resistance. (c) Serves as an essential subroutine in quantum algorithms addressing optimization,

combinatorial problems, and numerous other computational challenges.

Results on the Quantum Search Problem. An 𝑛-qubit quantum state |𝜓⟩ lives in a 2𝑛-dimensional

Hilbert space, and is expressed in the computational basis as: |𝜓⟩ =
∑

𝑥∈{0,1}𝑛 𝑎𝑥 |𝑥⟩, where∑
𝑥 |𝑎𝑥 |2 = 1. Given a problem of size 𝑁 on 𝑛 = log2(𝑁) qubits, we formulate the discovery of an al-

gorithm for the quantum search problem as finding a sequence of quantum gates that maximizes the

probability of measuring the target state with minimum circuit depth. The CLP framework is setup

with the following primitives (quantum gates) that make up Grover’s algorithm: (I) The Hadamard

gate on 𝑛 qubits whose action is on 𝑥 ∈ {0, 1}𝑛 is given by 𝐻⊗𝑛 |𝑥⟩ = 1√
2𝑛

∑
𝑦∈{0,1}𝑛 (−1)𝑥·𝑦 |𝑦⟩

where 𝑥 · 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 + · · · + 𝑥𝑛𝑦𝑛 (mod 2). (II) The oracle that marks the target state as

𝑈 𝑓 |𝑥⟩ = −|𝑥⟩ if 𝑥 = 𝑤 and 𝑈 𝑓 |𝑥⟩ = |𝑥⟩ if 𝑥 ≠ 𝑤 where |𝑤⟩ is the target state. (III) The Pauli-X

(NOT) gate on 𝑛 qubits 𝑋⊗𝑛 |𝑥1𝑥2 . . . 𝑥𝑛⟩ = | (1−𝑥1) (1−𝑥2) . . . (1−𝑥𝑛)⟩. (IV) The multi-controlled

Z gate that applies a phase flip when all qubits are |1⟩, i.e., MCZ |𝑥1𝑥2 . . . 𝑥𝑛⟩ = −|𝑥1𝑥2 . . . 𝑥𝑛⟩ if

𝑥1 = 𝑥2 = · · · = 𝑥𝑛 = 1 and MCZ |𝑥1𝑥2 . . . 𝑥𝑛⟩ = |𝑥1𝑥2 . . . 𝑥𝑛⟩ otherwise.

𝑈𝐷

...
...

...
...

...
...

· · · · · · ...

|0⟩ 𝐻

𝑈 𝑓

𝐻 𝑋 𝑋 𝐻

𝑈 𝑓 𝑈𝐷 𝑈 𝑓 𝑈𝐷

|0⟩ 𝐻 𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑍 𝑋 𝐻

𝑈′
𝐷

...
...

...
...

...
· · · · · · ...

|0⟩ 𝑋 𝐻

𝑈 𝑓

𝐻 𝐻

𝑈 𝑓 𝑈′
𝐷

𝑈 𝑓 𝑈′
𝐷

|0⟩ 𝑋 𝐻 𝐻 𝐻

|0⟩ 𝑋 𝐻 𝐻 𝐻

|0⟩ 𝑋 𝐻 𝐻 𝑍 𝐻

Figure 6: Comparison of Grover’s algorithm implementations: standard (left, 𝑈𝐷 is the standard

diffusion operator) and optimized (right, with simplified diffusion operator 𝑈′
𝐷

).

The circuit discovered by our framework is shown in Fig. 6. Compared to the standard Grover’s

circuit, also shown in Figure 6, the circuit depth is nearly halved, yielding a reduction of ( 𝜋2
√
𝑁 −1)

layers, and the number of gates is reduced by ( 𝜋2
√
𝑁 −1) log 𝑁 . Quantum errors scale exponentially

with the number of qubits due to decoherence and noise. Consequently, our approach results

in an exponential improvement in robustness measures. The standard Grover’s algorithm can be

summarized as follows. (1) Start with |0⟩⊗𝑛. Apply Hadamard gates to create uniform superposition:

|𝑠⟩ = 𝐻⊗𝑛 |0⟩⊗𝑛 = 1√
𝑁

∑𝑁−1
𝑥=0 |𝑥⟩. (2) Repeat 𝑂 (

√
𝑁) times: (a) Apply oracle 𝑈 𝑓 to mark the target

state. (b) Apply diffusion operator 𝐷 = |𝑠⟩⟨𝑠 | − 𝐼. The optimized Grover’s algorithm can be
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summarized as follows. (1) Start with |0⟩⊗𝑛. (2) Apply X gates to all qubits: 𝑋⊗𝑛 |0⟩⊗𝑛 = |1⟩⊗𝑛.

Apply Hadamard gates to create a different superposition: |𝑠′⟩ = 𝐻⊗𝑛 |1⟩⊗𝑛 = 1√
𝑁

∑𝑁−1
𝑥=0 (−1) |𝑥 | |𝑥⟩

where |𝑥 | is the Hamming weight (number of 1’s) in the binary representation of 𝑥. (3) Repeat

𝑂 (
√
𝑁) times: (a) Apply oracle 𝑈 𝑓 to mark the target state. (b) Apply modified diffusion operator

𝐷′ = 2|𝑠′⟩⟨𝑠′| − 𝐼. We show in Sec. 1.3 of the supplementary information that our discovered

gate sequence is mathematically equivalent to Grover’s algorithm and is an optimized version

constructed using the same gate set. The key insight is that by starting with |1⟩⊗𝑛 instead of |0⟩⊗𝑛,

we can directly implement the diffusion operator using just 𝐻⊗𝑛 → MCZ→ 𝐻⊗𝑛, eliminating the

need for X gates at every iteration.

Results on the Quantum Approximate Optimization Algorithm (QAOA). QAOA (27) is a

hybrid quantum-classical optimization algorithm designed to approximately solve combinatorial

optimization problems. In Sec. 1.4 we show that our approach achieves a 35% improvement when

compared with ADAPT-QAOA (28), the adaptive version of QAOA implemented within Nvidia’s

quantum computing library (CUDA-Q).

Conclusion. In this work, we have demonstrated the versatility of CLP through three distinct

examples for algorithm development. Our approach is broadly applicable beyond algorithmic

development, offering significant potential for automating engineering system design by tokenizing

complex designs into structured representations. Moreover, the capability of our framework to

facilitate real-time algorithm development could enable emergent behaviors in agent-based systems,

allowing adaptive and dynamic control in real-world scenarios.
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1 Materials and Methods

1.1 Ensemble MCTS and RL for Algorithm Discovery

We adapt the AlphaZero variant of MCTS (13–16) as a “babbling” engine that chains tokens to

obtain candidate algorithms. We use our adapted RL approach to (i) find generic solvers for the QAP

and construct quantum circuits for quantum search and optimization, (ii) construct instance-adapted

algorithms that are generated on-the-fly. Details of our ensemble MCTS approach follow, and we

omit aspects that do not deviate from AlphaZero.

State Representation. At depth 𝑑, state 𝑠𝑑 is defined by the sequence of previous actions taken

(𝑎1, . . . , 𝑎𝑑−1). Additional information can be extracted from the state to get a more informa-

tive representation to input the neural network, such as loss increments of the states (L(𝑠2) −

L(𝑠1), . . . ,L(𝑠𝑑) − L(𝑠𝑑−1)) and the sequence of time taken to compute each action (see below).

Transformer-Based policy and value networks. Having formulated the state as a sequence of

actions, rather than a problem-specific state such as a permutation or a quantum state, it is natural to

use transformers to perform the task of predicting the policy and value from the state. By abstracting

the problem this way, we obtain a unified learning framework for algorithm discovery, independant

of the underlying problem. It also ensures effective generalization across problem instances of

varying sizes, as the tokens themselves are defined for any size.

Ensemble Variant and Handling Stochasticity. To accommodate stochasticity arising from ran-

dom initializations and stochastic actions, we use ensembles of candidate solutions at each node,

typically 5 to 10, and keep track of the best candidate ever seen along each path. Any time a node is

reached, we compute a new batch of candidate solutions using 𝑠𝑑 = (𝑎1, . . . , 𝑎𝑑−1). We compute the

Gibbs average of the losses (
∑

𝑖 L𝑖𝑒
−𝛽L𝑖/∑𝑖 𝑒

−𝛽L𝑖 ) of all candidates ever seen at that node, which

gives an estimate of the expected loss achieved by the sequence of action 𝑠𝑑 , L(𝑠𝑑). This gives

more information of a node’s quality than sampling one candidate, and is fed to the transformers.

Computational cost control. To account for the vast difference in cost between different primitives,

our MCTS search incorporates computational cost into its decision process. A total compute budget

is allocated and halts the program once no further action is feasible within the budget. To account

for the cost of the policy and value network evaluations, which are proportional to the depth of the

tree, we also add a fixed compute penalty at each depth level. This compute budget information is
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also fed to the transformers, to allow greater planning and compute management. We also add an

early stopping primitive, so that not all of the compute is necessarily expended. Combined with a

discounting of the rewards for high use of compute, this fosters the discovery of computationally

efficient algorithms.

1.2 CLP applied to the QAP

1.2.1 Discovering new strategies with low-level primitives and CLP

Our algorithm discovery framework is capable of operating with both low-level and high-level

primitives. Using the QAP as a prototypical example, we now describe how it discovers new

algorithms by composing simple base primitives. The framework alternates between two phases: (1)

learning to compose primitives using MCTS, and (2) introducing new primitives by concatenating

existing ones, following a strategy inspired by Byte-Pair Encoding (BPE) (12).

Computational grammar. When analyzing existing algorithms, we observe that they often share

common building blocks, which we will interpret as low-level primitives. Many of these primitives

naturally correspond to matrix-level operations, such as gradient computations. However, these

intermediary computations often impose specific input requirements, such as being a permutation,

that are not guaranteed to be preserved in their outputs. This imposes constraints on how primitives

can be chained. Furthermore, certain fundamental algorithmic constructs do not neatly map to

operations at the matrix level. For instance, a for-loop does not itself directly operate on matrices;

instead, it represents repeated application of another primitive. To address this, we introduce the

notion of special primitives, operators that act upon other primitives to generate new composite

primitives. Because the effect of a special primitive depends on the structure of the primitive it

modifies, additional constraints arise when composing them. All these constraints naturally give

rise to a grammar that defines the set of valid primitive compositions. There is an inherent trade-

off between the expressivity afforded by a richer primitive set and grammar, and the complexity

involved in effectively composing these primitives. To manage this trade-off, we restrict special

primitives to operate exclusively on a single primitive at a time. As a result, certain algorithms,

such as Frank-Wolfe, while expressible in principle, are not immediately accessible due to their
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reliance on nested applications of special primitives. In such cases, expanding the primitive set

through Byte-Pair Encoding becomes essential to recover complex algorithms.

Used tokens. The chosen primitives are identity (𝑥 ↦→ 𝑥), gradient (GRAD: 𝑥 ↦→ ∇L(𝑥)), Linear

Sum Assignment (LSA: 𝑥 ↦→ arg min𝜋⟨𝑥, 𝜋⟩𝐹), and negative (NE: 𝑥 ↦→ −𝑥). Special primitives

include a 𝑘-iteration loop (FOR) and residual updates (RU: 𝑥 + 𝑃(𝑥)). We also introduce two

primitives that generate multiple permutations, e.g. sampling multiple random permutation, or

considering all permutation that are one 2-city flip away from the current permutation, apply a

given permutation, and keep the resulting state that has the smallest loss. Mathematically, they are

(PU: arg minL(𝑃(𝑦𝑖)), 𝑦𝑖 ∼ U), and parallel 2-city flips (2SWAP: 𝑥 ↦→ arg min{L[𝑃(𝑦𝑖, 𝑗 )] | 𝑦𝑖, 𝑗 =

𝑆𝑊𝐴𝑃(𝑥, 𝑖, 𝑗)}, where 𝑆𝑊𝐴𝑃(𝑥, 𝑖, 𝑗) is the 𝑥, with indices 𝑖 and 𝑗 swapped). These two primitives

allow for effective complexification, for instance the 2-city flip can produce 𝑘-optimal moves,

including 2-OPT and 𝑘-OPT by chaining. Also, recall that a STOP primitive is available, to learn

to perform early stopping (see computational cost control in 1.1).

Algorithmic Byte-Pair Encoding (A-BPE). After each round of babbling, we collect the se-

quences of tokens selected by ensemble MCTS. We count how often each pair of consecutive

tokens appears in the corpus, excluding pairs that reconstruct existing tokens (e.g., applying the

negative primitive twice to form the identity). The most common pair is merged into a new token,

and all its instances in the corpus are replaced accordingly. This process repeats until no remaining

pair occurs at least 10 times.

Results. We run multiple rounds of consecutive babbling, with 10 iterations of self-play each,

and A-BPE on QAP problems of size 15 then 40. The results of this experiment are shown in figure

4. After one round of babbling, the majority of rollouts end with a 2-city swap and identity, i.e.

the best flip (denoted 2FLIP, defined as 2𝑆𝑊𝐴𝑃 ◦ 𝐼𝐷). After one round of A-BPE concatenates

2FLIP into a single token, the composition of 2FLIP with a for loop becomes feasible, thereby,

yielding the popular 2OPT strategy that is used in multiple algorithms such as the Lin-Kernighan

heuristic. While around 60% rollouts finish with 2OPT->GRAD->LSA, the success rate (i.e. the

frequency of finding the global optimum) reaches 80%, indicating that other, instance-specific

strategies are discovered. After the second round of A-BPE, we move to problems of size 40, which
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is significantly harder, and renders 2OPT impractical due to its much higher computational cost

and reduced effectiveness. Two rounds of A-BPE expands the vocabulary to 107 tokens, which

include parts of existing and novel algorithms such as, 2SWAP, 3FLIP (i.e. 2SWAP(2SWAP(ID)),

FOR(GRAD->LSA), GRAD->LSA->FLIP, LSA->GRAD, NE->LSA.

In particular, A-BPE enables the discovery of the previously unavailable Frank-Wolfe algorithm

(NE->LSA->GRAD->FOR[RE(LSA->GRAD)]->LSA). Note that NE->LSA is an 𝐿2 projection

to the space of permutations, allowing the algorithm to be applied to any initial matrix. While this

strategy becomes quickly dominant, the success rate takes more time to grow. We observe the RL

algorithm learns to perform random restarts, using a large number of PU(GRAD->LSA) before FW.

At the final iteration of self-play, we reach 93% success rate, as new strategies and instance-specific

adaptations are learned. Overall, these dynamics demonstrate not only the automatic rediscovery

of classical heuristics but also the progressive invention of ever more effective, problem-tailored

algorithms.

1.2.2 Improving algorithm hyperparameters using CLP

In this experiment, we optimize the learning rate of the Frank-Wolfe algorithm. Recall that the FW

algorithm for QAP iteratively updates:

𝑃𝑘+1 = (1 − 𝛾𝑘 )𝑃𝑘 + 𝛾𝑘 LSA(∇L(𝑃𝑘 )),

where 𝛾𝑘 is a tunable step-size that typically follows 2
2+𝑘 . Using a line search (25) at each step

yields a similar performance and decay in the learning rate. In order to optimize this schedule,

we discretize the interval [0, 1] with 20 equidistant values. We define our computational tokens to

be the 20 different choices of learning rate. Using CLP, we optimize the chaining of these tokens,

creating learning rate schedules that are tailored to each instance.

Automatic selection via CLP reveals that cyclical step-size schedules (as in Fig. S1) yield improved

performance and an ability to reach global optimum in tested instances. Notably, this phenomenon

mirrors cyclical learning-rate strategies in neural networks, which achieve better accuracy and faster

convergence without extensive tuning (29).
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Figure S1: Comparison of the optimal step sizes for the FAQ algorithm generated by our CLP

approach compared to the standard step size schedule implemented in scipy. CLP discovers a

cyclic rate (blue) that reaches global optimum unlike the standard line search-based approach used

in scipy (red)

1.2.3 Reaching state-of-the performance using high level primitives and CLP

We define the high-level primitives as existing heuristics used to solve the QAP. They are simulated

annealing, Frank-Wolfe (also known as Fast Approximate QAP) with 2 variants to project from

doubly stochastic matrices to permutations, 2OPT, 3OPT and two variants of orthogonal optimiza-

tion, with two variants as well as the early stopping primitive (see computational cost control in

1.1). Note that the early stopping is not used in small instances (size less than 25).

One pair of models, policy and value networks, is trained on examples generated from CQAP and

PQAP, of varying size from 10 to 80. We compare our results to simply using Simulated Annealing

for many more iterations. This is a simple baseline, which is known to converge to the true solution

if given an exponentially large number of steps (30). We also code a simple branch-and-bound

strategy, using the Gilmore-Lawler bound, with a limit on the total time spent. Finally, for a stronger

benchmark, we use the commercial Gurobi solver by interpreting the QAP as a mixed-integer

quadratic problem, and setting the runtime to be the same as our method. All examples up to size
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80 run in under 200s, with the longest run taking less than 30 minutes for a size of 150.

Composite QAP (CQAP) Generator. The composite QAP (CQAP) generator (23) produces

problems with varying structural complexity, facilitating robust evaluation of algorithmic perfor-

mance. Our framework achieves optimality in all tested instances. In comparison, other methods get

non optimal results, with a gap that widens as the size of the problem increases. Observing no gap

between training and testing performance, we can conclude our framework has learned effective

strategies for the whole CQAP class of problems.

Palubeckis QAP (PQAP) Generator. The Palubeckis QAP (PQAP) generator (24) represents a

sophisticated method for crafting challenging QAP instances with precisely known optimal solu-

tions. Through Hamming distance analysis, we observed that the PQAP optimization landscape is

notably more challenging compared to CQAP. It features steep and narrow valleys around global

optima and a high density of local optima, complicating heuristic search efforts significantly.

Despite this difficulty, our achieves 1% optimality gap in all tested instances, and beats the other

methods in all but one example. Once again this performance is consistent with training perfor-

mance, highlighting the capability of our method to generalize to other instances in the training

distribution.

Benchmarking on QAPLIB. We evaluate our method using the widely recognized QAPLIB (31)

library, known for its challenging benchmark problems and completely unseen in the training of

our method. CLP consistently achieves state-of-the-art performance, achieving the best-known

objective values across multiple tested instances. It beats or equals other methods in most instances.

Crucially, Gurobi beats our method in only one test problem of size larger than 25. We also note that

global optimum is achieved for problems of size up to 100. This shows the excellent generalization

of our method to unseen problems, with potentially different structure from the CQAP and PQAP

generators used in training. Detailed comparative results are provided in Table S4.
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1.2.4 Using CLP to manually create algorithms

While we present a method for automated algorithm discovery, CLP can be a useful framework for

manually designing algorithm. In the process of developing our framework, we went through the

steps of tokenizing, complexifying and improving by trial and error an algorithm, giving us valuable

insight on how to automate this process. It resulted in an algorithm capable of achieving state-of-the-

art performance with minimal computational resources when compared to other heuristics. While

this algorithm was ultimately not implemented in automated discovery, it gives valuable insight

on how high-level complexification within CLP is abstracted away from direct code-generation.

Consequently, it fundamentally differs from approaches (3–6).

Starting from the Frank-Wolfe algorithm, which is a gradient descent in the space of doubly

stochastic matrices, we observed that projecting the final doubly stochastic matrix to a permutation

could prove to be difficult. While using 𝐿2 projection or the permutation of steepest descent gives

good results, taking the best of the two improves results most. This yielded the best of both token.

The gradient descent would often get stuck in local minima, as the optimization is not necessarily

convex. To address this, we introduce a biasing token that adds a repulsive penalty to the loss.

Specifically, given the current doubly stochastic matrix 𝑥0 and a biasing matrix 𝑇 , the biased loss

is L𝐵 (𝑥) = L(𝑥) + 𝛾 Tr(𝑥𝑇𝑇). This allows one to push the gradient descent away from the current

solution. To introduce some variety in the exploration, we introduced another special primitive

similar to the parallel states primitive in 1.2.1. From a permutation 𝑥, take 10 uniform random

permutations, 𝑥𝑖, and 10 random scalars 𝑈𝑖 ∼ U([0, 1]). Letting 𝑦𝑖 = 𝑃(𝑈𝑖𝑥𝑖 + (1 − 𝑈𝑖)𝑥) for 𝑃

an arbitrary token acting on doubly stochastic matrices, this parallel state with perturbation token

picks arg minL(𝑦𝑖) as its output. This is similar to implementing a deflation technique to discover

new solutions (32). This variety allows us to compute a Gibbs average, 𝑦𝛽 =
∑

𝑖 𝑦𝑖𝑒
−𝛽L(𝑦𝑖 )∑

𝑖 𝑒
−𝛽L(𝑦𝑖 ) . It extracts

information about the most likely values for the true optimal on average, and is used to define the

bias token, 𝑇 = 𝑦𝛽 ⊙ (1 − 𝑦𝛽) ⊙ 𝑥0 (writing ⊙ for the entrywise product).

Having complexified our vocabulary with these new tokens, we manually crafted a highly perfor-

mant algorithm that solved all tested instances of the CQAP generator up to size 160. This early

success motivated us to extend and automate this approach, using the CLP framework.
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1.3 Discovering a new quantum circuit for Grover’s algorithm with lower

depth using CLP

The GroverGame initializes with 𝑛 qubits and four primitive operations. An oracle randomly selects

a target state from the 2𝑛 possible states, with all states permuted each run to ensure generalization

across arbitrary targets. The iteration limit is set to Grover’s theoretical bound, ⌈ 𝜋4
√
𝑁⌉, preventing

the discovery of algorithms that exceed it. The game terminates either in success (+1), when a

gate sequence identifies the target state within a tolerance of 3 × 10−2, or in failure (−1), when the

maximum allowed sequence length is reached without success.

Upon termination, training data for the neural network is generated at each step, consisting

of an observation tensor (quantum states), the overlap between current and target states, chosen

primitives, and a modified reward value. To improve learning efficiency and encourage minimal

circuit depth, raw rewards (±1) are adjusted: for successful cases, shorter gate sequences are

rewarded using 𝑣 = 1 − len(sequence)
max iterations , whereas failures receive partial credit based on correctly

identified targets (states), calculated as 𝑣 = −1 + # targets achieved
𝑁

. This modification incentivizes

efficiency and mitigates sparse-reward problems common in reinforcement learning. Early-stage

training faces sparse positive examples, leading to batch balancing of positive and negative samples

(approximately 50% each) via sampling with replacement when necessary. This ensures effective

learning of rare successful gate sequences.

Analysis. We now demonstrate that our optimized gate sequence shown in Fig. 6 is mathematically

equivalent to Grover’s algorithm but more efficient in gate usage.

First, we summarize the standard Grover algorithm. Start from the state |0⟩⊗𝑛 and apply

Hadamard gates to achieve the uniform superposition state

|𝑠⟩ = 𝐻⊗𝑛 |0⟩⊗𝑛 = 1
√
𝑁

𝑁−1∑︁
𝑥=0
|𝑥⟩.

Then, for 𝑂 (
√
𝑁) iterations, repeat two operations: (i) apply the oracle 𝑈 𝑓 that marks the target

state |𝑤⟩ by flipping its phase, and (ii) apply the diffusion operator 𝐷 = 2|𝑠⟩⟨𝑠 | − 𝐼. Analyzing one

iteration, after applying the oracle 𝑈 𝑓 , we have:

𝑈 𝑓 |𝑠⟩ = |𝑠⟩ −
2
√
𝑁
|𝑤⟩.
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Next, applying the diffusion operator gives:

𝐷𝑈 𝑓 |𝑠⟩ = 2|𝑠⟩⟨𝑠 |
(
|𝑠⟩ − 2

√
𝑁
|𝑤⟩

)
−
(
|𝑠⟩ − 2

√
𝑁
|𝑤⟩

)
.

Noting that ⟨𝑠 |𝑤⟩ = 1/
√
𝑁 , this simplifies to:

𝐷𝑈 𝑓 |𝑠⟩ =
(
1 − 4

𝑁

)
|𝑠⟩ + 2

√
𝑁
|𝑤⟩.

The optimized Grover algorithm proceeds as follows. Starting from |0⟩⊗𝑛, apply 𝑋 gates to all

qubits, resulting in the state |1⟩⊗𝑛. Next, apply Hadamard gates to form a modified superposition:

|𝑠′⟩ = 𝐻⊗𝑛 |1⟩⊗𝑛 = 1
√
𝑁

𝑁−1∑︁
𝑥=0
(−1) |𝑥 | |𝑥⟩,

where |𝑥 | is the Hamming weight (number of ones) in the binary representation of 𝑥. Then, iteratively

apply the oracle 𝑈 𝑓 to mark the target state and use the modified diffusion operator:

𝐷′ = 2|𝑠′⟩⟨𝑠′| − 𝐼,

repeating these steps for 𝑂 (
√
𝑁) iterations.

We now analyze the optimized circuit’s effect on the initial state |0⟩⊗𝑛. Applying 𝑋 gates

transforms it to |1⟩⊗𝑛, followed by Hadamard gates yielding the modified superposition:

|𝑠′⟩ = 1
√
𝑁

𝑁−1∑︁
𝑥=0
(−1) |𝑥 | |𝑥⟩.

The oracle 𝑈 𝑓 acts similarly as before, marking the target state |𝑤⟩:

𝑈 𝑓 |𝑠′⟩ = |𝑠′⟩ −
2
√
𝑁
(−1) |𝑤 | |𝑤⟩.

The modified diffusion operator is defined as:

𝐷′ = 2|𝑠′⟩⟨𝑠′| − 𝐼 = 𝐻⊗𝑛 (2|1⟩⟨1| − 𝐼)𝐻⊗𝑛,

which can be efficiently implemented using the gate sequence 𝐻⊗𝑛 → MCZ→ 𝐻⊗𝑛, as illustrated

in Fig. 6. Applying 𝐷′ after 𝑈 𝑓 gives:

𝐷′𝑈 𝑓 |𝑠′⟩ =
(
1 − 4

𝑁

)
|𝑠′⟩ + 2

√
𝑁
(−1) |𝑤 | |𝑤⟩.

Notably, this result differs from standard Grover’s algorithm by only a global phase factor (−1) |𝑤 |,

which does not affect measurement probabilities. Therefore, our optimized circuit remains math-

ematically equivalent. The crucial advantage is that initializing with |1⟩⊗𝑛 directly simplifies the

diffusion operator, removing the intermediate 𝑋 gates required by the standard implementation.
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Comparison to Related Work. Gilliam et al. (33) reduce circuit depth in Grover’s algorithm

by replacing Hadamard gates with 𝑅𝑋 (𝜋/2) rotations, eliminating extra 𝑋 gates (see Table S1).

However, we note that 𝑅𝑋 gates are challenging to implement on real-world hardware platforms. Our

circuits, on the other hand, are more practical. For example, our circuits are easily implementable

on photonic based quantum computing solutions by removing the need for 𝑅𝑋 gates. Our approach

achieves the same depth reduction using only 𝐻 and 𝑋 gates, preserving compatibility with Clifford-

based frameworks and providing a more conventional construction. Wu et al. (34) and Zhang

and Korepin (35) propose multistage variants that reduce depth via hierarchical partitioning and

local diffusion operators. Piron et al. (36) introduce a hybrid strategy that reduces Oracle calls

by combining fewer Grover iterations with bounded classical retries. In contrast, our method

avoids block partitioning and classical feedback, and achieves depth reduction via a simple basis

transformation. We also note that in future work, we plan to include hardware implementation

details to design circuits that are tailored to the quantum platform of interest.

Table S1: Comparison of Grover Optimization Strategies

Method Diffusion Approximation? Hybrid? Depth
Operator Reduction

Ours 𝐻 ·MCZ · 𝐻 No No 2× fewer 1-qubit gates
Gilliam et al. (33) 𝑅𝑋 ·MCZ · 𝑅𝑋 No No 2× fewer gates per iteration
Wu et al. (34) Hierarchical No Yes (2-stage) 1.2× depth reduction
Zhang & Korepin (35) Local diffusion Yes No 20% empirical reduction
Piron et al. (36) Standard No Yes 10% reduction

1.4 CLP-based QAOA results

The Quantum Approximate Optimization Algorithm (QAOA) (27) is a hybrid quantum-

classical optimization algorithm designed to approximately solve combinatorial optimization prob-

lems formulated as a bit-string search 𝑧 ∈ {0, 1}𝑛 that minimizes a given cost function 𝐶 (𝑧).

The algorithm was designed for the current generation of noisy quantum platforms with the aim

of demonstrating their benefit and has been applied to problems in graph theory, supply chain

optimization, task scheduling, and energy management to name a few. By encoding the cost func-

tion in a Hamiltonian form: 𝐻𝐶 =
∑

𝑧∈{0,1}𝑛 𝐶 (𝑧) |𝑧⟩⟨𝑧 |, the algorithm approximates solutions by

preparing and optimizing parameterized quantum states |𝜓(𝛾, 𝛽)⟩, which depend on adjustable
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parameters (𝛾, 𝛽). These parameters are tuned using classical optimization routines such as gra-

dient descent. These quantum states are implemented on quantum devices using quantum circuits

that consist of alternating layers: a cost Hamiltonian layer (𝑒−𝑖𝛾𝐻𝐶 ), that encodes the cost func-

tion, and a mixer Hamiltonian layer (𝑒−𝑖𝛽𝐻𝑀 ), that are designed to facilitate exploration of the

energy landscape. Therefore, one can map the initial state |+⟩⊗𝑛 to the final quantum state us-

ing: |𝜓(𝛾, 𝛽)⟩ = 𝑒−𝑖𝛽𝑝𝐻𝑀 𝑒−𝑖𝛾𝑝𝐻𝐶 . . . 𝑒−𝑖𝛽1𝐻𝑀 𝑒−𝑖𝛾1𝐻𝐶 |+⟩⊗𝑛. As mentioned previously, the optimal

parameters (𝛾𝑖, 𝛽𝑖) are computed by classically minimizing the expectation of the cost Hamiltonian:

(𝛾∗, 𝛽∗) = arg min
𝛾,𝛽
⟨𝜓(𝛾, 𝛽) |𝐻𝐶 |𝜓(𝛾, 𝛽)⟩.

Results on the Quantum Approximate Optimization Algorithm (QAOA) An important chal-

lenge within the QAOA setting is the design of shallow mixer Hamiltonian quantum circuits to

minimize the optimization cost. We focus our efforts on using our CLP framework for designing

the mixer Hamiltonian circuits for QAOA. We compare our approach with an adaptive version

of QAOA known as ADAPT-QAOA (28). The approach is a standardized solution implemented

within Nvidia’s quantum computing library (CUDA-Q). ADAPT-QAOA is an iterative classical-

quantum algorithm that adaptively builds problem-specific mixer Hamiltonians for solving a given

combinatorial optimization problem. As shown in Fig. S2 (a), unlike standard implementations

of QAOA that use the same mixer Hamiltonian at each step, ADAPT-QAOA iteratively selects

operators from a pool of candidate gates based on their gradient contributions to the cost function.

The mixer that produces the steepest descent at each step is selected and appended to the circuit

ansatz. All parameters (𝛾, 𝛽) of the cost and mixer Hamiltonians are then optimized classically

using variational quantum eigensolver (VQE). The process continues until either a convergence

criteria is met or the user prescribed maximum circuit depth is reached.

Our CLP-based approach significantly improves the ADAPT-QAOA approach by learning to

propose the optimal problem-specific mixer Hamiltonian circuit at each step. Unlike ADAPT-QAOA

that uses steepest descent to iteratively add successive gates to the circuit ansatz, our CLP-based

QAOA framework, as depicted in Fig. S2 (b), simultaneously considers entire chains of gates for the

mixer circuits by using using MCTS and reinforcement learning to implement a lookahead policy.

To test our approach, we use the CLP framework to efficiently construct the mixer Hamiltonian

circuits for instances of the MAX-CUT problems on 𝑝-regular graphs that reduce the error for
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a user prescribed maximum circuit depth. Our primitives consist of the same gates used with

the ADAPT-QAOA framework for generating circuits (28) . Namely, we use the standard QAOA

mixer pool (28) that consists of
∑

𝑖∈𝑄{𝑋𝑖}, single-qubit ∪𝑖∈𝑄{𝑋𝑖}, and multi-qubit entangling gates

∪𝑖, 𝑗∈𝑄×𝑄{𝐵𝑖𝐶 𝑗 |𝐵𝑖, 𝐶 𝑗 ∈ {𝑋,𝑌, 𝑍}}, where 𝑄 is the set of qubits. We note that only Pauli strings

that have an even number of 𝑌 or 𝑍 gates are retained in our mixer pool (28). We generate 1000

𝑝-regular graphs for the training of our neural networks and limit the depth of the mixer circuits.

We then test the CLP framework on 21 graphs that were not seen in training. The CLP-framework

outperforms ADAPT-QAOA in 100% of test cases and corresponds to an average improvement of

34.62%. The results are tabulated in table S2.

Table S2: Performance Comparison: CLP-QAOA vs. ADAPT-QAOA and % improvement

Circuit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

CLP -2.8 -2.6 -3.2 -4.1 -3.7 -2.3 -2.8 -2.4 -3.9 -2.9 -2.4 -2.8 -3.3 -2.9 -3.5 -3.3 -3.4 -2.6 -3.3 -4.1 -3.3

ADAPT -2.1 -2.1 -2.2 -3.2 -2.5 -1.5 -2.0 -2.1 -2.6 -2.0 -2.1 -2.3 -2.4 -2.2 -2.6 -2.6 -2.4 -2.1 -2.7 -2.5 -2.4

% Improve 36 23 44 30 45 49 41 16 51 44 17 19 34 35 35 28 38 21 23 61 38

2 Supplementary Text

2.1 List of major algorithms discovered over time

The following table summarizes significant algorithms discovered throughout history, spanning

mathematics, optimization, cryptography, and machine learning.

Algorithm Year Algorithm Year
Ancient Egyptian Multiplication 3000 BCE Babylonian Square Root Approximation 2000 BCE
Mesopotamian Algorithm for Square Roots 1800 BCE Euclidean Algorithm 300 BCE
Method of Exhaustion (Archimedes) 250 BCE Sieve of Eratosthenes 200 BCE
Chinese Remainder Theorem 250 CE Gaussian Elimination 263 CE
Chakravala Method 628 CE Al-Khwarizmi’s Algebra 820 CE
Al-Kindi’s Cryptography 850 CE Cubic/Quartic Solving 1540
Logarithms 1614 Newton-Raphson 1671
Calculus 1687 Euler Numerical Methods 1700
Linear Regression 1700 Gradient Descent 1800
Ada Lovelace’s Algorithm 1842 Krylov Algorithm 1900
Cholesky Decomposition 1900 Turing Machine 1936
Finite Element 1943 Merge Sort 1945
Breadth First Search 1945 Simplex Algorithm 1947
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Markov Chain Monte Carlo 1948 Matrix Decompositions 1951
Huffman Coding 1952 Metropolis Algorithm 1953
Hashing Algorithm 1953 k-means Clustering 1956
Fortran Compiler 1956 Perceptron 1959
QR Decomposition 1959 Dijkstra’s Shortest Path 1960
Branch and Bound 1960 Kalman Filter 1960
Quicksort 1961 Viterbi’s algorithm 1968
Fast Fourier Transform 1968 A* Pathfinding 1969
Genetic Algorithms 1970 Bloom Filter 1970
Lin Kernighan Heuristic 1973 Strassen’s Matrix Multiplication 1976
Buchberger’s algorithm 1976 Diffie–Hellman Key Exchange 1977
RSA Cryptosystem 1977 Expectation Maximization 1977
Lempel-Ziv Compression 1977 Beam Search 1977
Integer Relation Detection 1977 KMP algorithm 1977
Simulated Annealing 1980 Lattice basis reduction algorithm 1982
Ellipsoid Algorithm 1984 Reinforcement Learning 1984
Interior Point Algorithm 1984 Elliptic Curve Cryptography 1984
Fast Multipole 1985 Backpropagation for Neural Networks 1986
Convolutional Neural Networks 1987 JPEG Encoding 1992
Turbo Code 1993 Shor’s Quantum Factoring 1994
Support Vector Machine 1995 Grover’s algorithm 1996
PageRank 1998 BitTorrent 2001
Distributed Hash Table 2001 AKS Primality Test 2002
Packrat parser 2002 Community Detection Algorithms 2003
Khyber 2003 Sparse Signal Processing 2004
Monte Carlo tree search (MCTS) 2006 Bitcoin & Blockchain 2009
Fully Homomorphic Encryption 2009 Lattice based cryptography 2013
Secure NTRU 2013 Deep Q Network 2013
Word2vec 2013 You Only Look Once 2013
Raft algorithm 2013 Transformer/Attention Algorithms 2017
Zk-STARK 2021

2.2 Why is the QAP hard?

The QAP (37, 38) is a strongly NP-hard problem (39), meaning that not only does no known

polynomial-time algorithm exist to solve the QAP (and it is unlikely that such an algorithm

will ever be found unless 𝑃 = 𝑁𝑃), but also that constructing a constant-factor approximation

algorithm is itself NP-hard. The QAP is often regarded as the “hardest of the NP-hard problems”

due to its extreme computational difficulty, even for relatively small instances (e.g., 𝑛 = 20) (19).

Furthermore, any problem in NP (nondeterministic polynomial time) can be reduced to the QAP

in polynomial time (39). Thus, if we were able to solve the QAP efficiently (in polynomial time),

we would be able to solve all NP problems efficiently, which would have profound implications

for computational complexity theory. The QAP also encompasses several well-known problems in

combinatorial optimization. For instance, by setting 𝐹𝑖, 𝑗 = 1, 𝐷 𝑗 ,𝑖 = 𝐷𝑖, 𝑗 ≥ 0, 𝐷𝑖,𝑖 = 0 and 𝐶𝑖, 𝑗 = 0,

the QAP simplifies to the Traveling Salesman Problem (TSP) (40), which is a special case of the
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QAP and is generally considered much easier to solve. Moreover, by setting 𝐶 = 0 and allowing

𝐷𝑖, 𝑗 ∈ {0, 1}, the QAP reduces to the Graph Matching Problem (41), a problem concerned with

finding optimal node correspondences between two graphs. Finally, by setting both 𝐹 = 0 and

𝐷 = 0 the QAP simplifies to the LSA problem, which can be solved in polynomial time using the

Hungarian Algorithm (21).

2.3 Why is the QAP important?

The optimization of logistics and supply chains, such as allocating resources to multiple sites during

operations and determining inventory levels over time at various facilities, is inherently challeng-

ing due to the combinatorial scaling of search spaces and the dynamic evolution of states. These

complexities often cause current algorithms to produce suboptimal solutions, with performance

deteriorating significantly as problem size increases, potentially leading to undesirable outcomes

ranging from increased operational costs to loss of life. In the context of supply chain management,

QAP is particularly important for strategically placing facilities to minimize the time required to

move items through a complex network. The problem’s dynamic and uncertain nature, coupled

with evolving structural changes over time, further complicates the optimization process. Existing

methods frequently fail to adapt to these changes, underscoring the need for algorithms that can

dynamically generate solutions in response to shifting conditions. In supply chain optimization,

moderate-sized problems can involve over O(106) parameters, making the simulation and opti-

mization of these networks inefficient with current algorithms. Additionally, other applications of

QAP include facility layout and location (e.g., airport design), data center optimization, and very

large-scale integration circuit design. Developing an automated algorithm discovery framework

would therefore represent a significant industry and operational breakthrough, enabling the dy-

namic generation of algorithms that adapt to changing conditions and achieve lower-cost solutions

by effectively relocating items to critical areas. Such advancements would not only enhance the

efficiency and resilience of logistics but also offer substantial benefits across various sectors reliant

on complex supply chain and facility optimization.
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2.4 Current methods for solving the QAP

Current methodologies for solving the QAP span exact algorithms, heuristic/metaheuristic meth-

ods, and hybrid/emerging approaches, detailed in surveys (38, 42).

Exact methods include systematic techniques such as Branch and Bound (B&B), Cutting Plane

methods, Dynamic Programming (DP), and Integer Programming (IP), providing guarantees of

optimality but with significant computational demands for general instances.

Heuristic algorithms offer efficient approximations suitable for larger problems. Prominent exam-

ples include Simulated Annealing (SA), Genetic Algorithms (GA), Tabu Search (TS), Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO), Iterated Local Search (ILS), and Greedy

Randomized Adaptive Search Procedure (GRASP).

Hybrid and emerging approaches blend multiple methodologies to enhance performance. These

include Memetic Algorithms (MA), Hybrid Genetic Algorithms (HGA), Parallel Algorithms, and

novel techniques such as Quantum Algorithms and Machine Learning-assisted heuristics.

2.5 Exhaustive list of primitives for the QAP

2.5.1 Low level primitives

Low level primitives are tokens that do not directly solve the problem at hand, here the QAP, but

can be chained to get an algorithm.

The following low level primitives are implemented in section 1.2.1 are:

• Identity (ID): 𝑥 ↦→ 𝑥

• Linear Sum Assignment (LSA): 𝑥 ↦→ arg min𝜋⟨𝑥, 𝜋⟩𝐹

• Negative (NE): 𝑥 ↦→ −𝑥

• Gradient (GRAD): 𝑥 ↦→ ∇L(𝑥)

• Early stopping (STOP): No further computation, saves compute budget for higher reward.

Additionally, 1.2.1 uses special primitives, whose outputs are determined by the current state and

next token 𝑃:
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• For loop (usually 50 iterations) (FOR): 𝑥, 𝑃 ↦→ 𝑃 ◦ ... ◦ 𝑃(𝑥)

• Residual update (RU): 𝑥, 𝑃 ↦→ 𝑥 + 𝑃(𝑥)

• Parallel uniform (PU): 𝑥, 𝑃 ↦→ arg minL(𝑃(𝑦𝑖)), (𝑦𝑖)10
𝑖=1 ∼ U

• Parallel 2-city swaps (2SWAP): 𝑥, 𝑃 ↦→ arg min{L[𝑃(𝑦𝑖, 𝑗 )] | 𝑦𝑖, 𝑗 = 𝑆𝑊𝐴𝑃(𝑥, 𝑖, 𝑗)}, where

𝑦
𝑖, 𝑗

𝑘
= 𝑥𝑘 if 𝑘 ≠ 𝑖, 𝑗 , and 𝑦

𝑖, 𝑗

𝑗
= 𝑥𝑖, 𝑦𝑖, 𝑗𝑖 = 𝑥 𝑗 is the permutation 𝑥, with indices 𝑖 and 𝑗 swapped

Finally, several primitives are considered for manual algorithm discovery 1.2.4:

• Gibbs permutation average (uses multiple permutations) (GIBBS): (𝑥𝑖)𝑘𝑖=1 ↦→
∑

𝑖 𝑥𝑖𝑒
−𝛽L(𝑥𝑖 )∑

𝑖 𝑒
−𝛽L(𝑥𝑖 )

• Biasing tokens (BIAS): Given a matrix 𝑇 and a doubly stochastic matrix 𝑥0, changes the loss

to L𝑏 (𝑥) = L(𝑥) + 𝛾 Tr(𝑥𝑇0𝑇)

• Best of both (BEST): 𝑥 ↦→ arg min𝑖∈{1,2} (L(𝑦𝑖)) where 𝑦1 = 𝐿𝑆𝐴 ◦ 𝑁𝐸 (𝑥) and 𝑦2 =

𝐿𝑆𝐴 ◦ 𝐺𝑅𝐴𝐷 (𝑥)

• Parallel state with permutation (PSP): 𝑥, 𝑃 ↦→ arg min{L[𝑃(𝑦𝑖)] | 𝑦𝑖 = 𝑈𝑖𝑥𝑖 + (1 −𝑈𝑖)𝑥}

where 𝑥𝑖 is a random uniform permutation, and 𝑈𝑖 ∼ U([0, 1])

2.5.2 High level primitives

The following algorithms are used to get the high level primitives results in 1.2.3. Note that many

of these primitives are rediscovered in 1.2.1.

• Two-location optimal swaps (2OPT): iteratively swaps two distinct index 𝑖, 𝑗 using the best

possible swap, until no improvement is possible. Note that this is approximately achieved by

𝐹𝑂𝑅(2𝑆𝑊𝐴𝑃 ◦ 𝐼𝐷) (with enough iterations).

• Three-location optimal swaps (3OPT): same as 2OPT, but a 3 location swaps can change up

to 3 indices, 𝑖, 𝑗 , 𝑘 . Note that this can be approximately achieved using𝐹𝑂𝑅(2𝑆𝑊𝐴𝑃(2𝑆𝑊𝐴𝑃◦

𝐼𝐷)). In practice, we limit the number of explorations of 3 city swaps, as this can be pro-

hibitively expensive.
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• Path reversal 2OPT (P-2OPT): defining the path reversal such that 𝑦𝑖, 𝑗 = 𝑅𝐸𝑉𝐸𝑅𝑆𝐸 (𝑥, 𝑖, 𝑗),

𝑦
𝑖, 𝑗

𝑘
= 𝑥 𝑗+𝑖−𝑘 if 𝑖 ≤ 𝑘 ≤ 𝑗 , else 𝑦

𝑖, 𝑗

𝑘
= 𝑥𝑘 , P-2OPT applies iteratively the best path reversal

until no improvement.

• Path reversal 3OPT (P-3OPT) choose the best 3 indices, 𝑖, 𝑗 , 𝑘 , and iteratively applies 2 path

reversal, 𝑅𝐸𝑉𝐸𝑅𝑆𝐸 (𝑅𝐸𝑉𝐸𝑅𝑆𝐸 (𝑥, 𝑖, 𝑗), 𝑗 , 𝑘), until no improvement or maximum iteration

number is reached.

• Simulated annealing (SA): This primitive performs 𝑚 steps of simulated annealing using

two-location flips on an initial permutation 𝑥. At step 𝑘 , simulated annealing picks two random

indices, 𝑖, 𝑗 , and performs 𝑥𝑘 = 𝑆𝑊𝐴𝑃(𝑥𝑘 , 𝑖, 𝑗). With probability min
(
1, exp

(
−ΔL

𝑇𝑘

))
where

ΔL = L(𝑥𝑘 ) − L(𝑥𝑘 ), the move is accepted and 𝑥𝑘+1 = 𝑥𝑘 ; else 𝑥𝑘+1 = 𝑥𝑘 . The temperature

follows a decreasing schedule 𝑇𝑘 = 𝑇0(1− 𝜖)𝑘 . This approach probabilistically accepts worse

solutions, allowing escape from local minima, until 𝑚 iterations are completed.

• Frank-Wolfe (FW): Performs gradient descent in the space of doubly stochastic matrices.

One iteration has the update 𝑥𝑘+1 = (1− 𝛾𝑘 )𝑥𝑘 + 𝛾𝑘𝐿𝑆𝐴(𝐺𝑅𝐴𝐷 (𝑥𝑘 )), where 𝛾𝑘 = 2/(2+ 𝑘)

• Orthogonal relaxation with polar decomposition (OP). Following the relaxation strategy

described in (20), OP performs gradient descent in the space of orthogonal matrices using

the Procrustes solution (20,43). Defining Q[𝑥] as the Q factor of the QR-decomposition, the

update rule is 𝑥𝑘+1 = Q[𝑥𝑘 − 𝛾𝑘𝐺𝑅𝐴𝐷 (𝑥𝑘 )], with the learning rate 𝛾𝑘 = 0.5 ∗ 0.95𝑘 .

• Orthogonal relaxation with polar decomposition and momentum (OC): More complex

update rule for gradient descent with momentum in the orthogonal matrices space, see (20,43).

Note that the space of permutation matrices is exactly the intersection of the doubly stochastic

matrices and orthogonal matrices, justifying the relaxations of both FW and OC.
Table S4: Relative gap ((L −minL)/minL, in %) on QAPLIB Benchmark Instances (2 per row)

Problem Best Model CLP (ours) (%) SA (%) BB (%) Gurobi (%) Problem Best Model CLP (ours) (%) SA (%) BB (%) Gurobi (%)

bur26f CLP 0.0 1.0 8.6 11.5 nug18 CLP 0.0 4.7 21.9 1.2
bur26c CLP 0.0 1.4 7.1 5.3 nug17 CLP 0.0 6.7 20.1 2.3
bur26e CLP 0.1 1.4 8.1 10.9 nug16a CLP 0.0 7.2 23.5 5.5
bur26h CLP 0.1 2.1 8.8 9.8 nug15 CLP 0.0 6.1 19.5 3.1
bur26a CLP 0.2 0.3 6.4 8.5 nug14 CLP 0.0 7.3 23.1 2.2

Continued on next page
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Problem Best Model CLP (ours) (%) SA (%) BB (%) Gurobi (%) Problem Best Model CLP (ours) (%) SA (%) BB (%) Gurobi (%)

bur26b CLP 0.2 0.7 6.7 7.3 nug12 CLP/Gurobi 0.0 5.2 15.6 0.0
bur26d CLP 0.1 0.4 7.2 10.3 rou20 CLP 0.1 5.0 17.5 2.3
bur26g CLP 0.3 0.7 8.5 10.2 rou15 CLP 0.0 5.3 21.3 6.2
chr25a Gurobi 10.0 85.2 304.6 8.6 rou12 CLP/Gurobi 0.0 6.3 22.8 0.0
chr22b CLP 1.6 30.4 192.6 7.1 scr20 CLP 0.0 12.4 59.0 2.2
chr22a Gurobi 1.9 14.1 116.6 0.7 scr15 CLP/Gurobi 0.0 20.3 76.9 0.0
chr20b CLP 7.0 56.5 213.7 11.3 scr12 CLP/Gurobi 0.0 6.0 45.1 0.0
chr20a Gurobi 1.5 72.0 248.2 0.0 sko100e CLP 0.0 9.0 16.4 17.3
chr20c CLP/Gurobi 0.0 45.9 625.1 0.0 sko100c CLP 0.1 8.4 17.6 16.7
chr18a Gurobi 0.2 105.9 418.7 0.0 sko100d CLP 0.2 9.2 17.2 16.8
chr18b CLP/Gurobi 0.0 16.2 48.6 0.0 sko100b CLP 0.0 8.5 17.7 17.9
chr15c Gurobi 4.6 87.5 361.8 0.0 sko100f CLP 0.2 8.2 16.6 16.9
chr15a CLP/Gurobi 0.0 31.6 295.2 0.0 sko100a CLP 0.1 8.0 18.4 15.9
chr15b CLP/Gurobi 0.0 8.1 497.6 0.0 sko90 CLP 0.1 7.8 17.0 17.8
chr12b CLP/Gurobi 0.0 28.6 255.4 0.0 sko72 CLP 0.1 8.6 20.8 8.7
chr12a CLP/Gurobi 0.0 17.8 232.3 0.0 sko64 CLP 0.0 8.9 23.0 8.1
chr12c CLP/Gurobi 0.0 82.8 103.0 0.0 sko56 CLP 0.1 8.9 23.2 7.2
els19 CLP/Gurobi 0.0 45.1 69.9 0.0 sko49 CLP 0.1 8.5 21.9 5.8

esc128 CLP 6.2 125.0 209.4 406.2 sko42 CLP 0.0 6.4 27.0 7.6
esc32e CLP/SA/Gurobi 0.0 0.0 1400.0 0.0 ste36b CLP 11.6 58.9 241.0 412.1
esc32g CLP/SA/Gurobi 0.0 0.0 366.7 0.0 ste36c CLP 4.2 27.0 67.6 100.4
esc16a CLP/SA/Gurobi 0.0 0.0 38.2 0.0 ste36a CLP 4.3 23.3 59.9 120.8
esc16j CLP/SA/Gurobi 0.0 0.0 150.0 0.0 tai256c CLP 0.3 5.8 120.5 16.9
had20 CLP 0.0 3.1 9.2 0.2 tai150b CLP 0.8 14.8 30.2 30.2
had18 CLP 0.0 2.4 8.3 0.0 tai100b CLP 0.2 19.1 51.1 37.5
had14 CLP/Gurobi 0.0 0.2 12.2 0.0 tai100a CLP 1.1 8.5 13.3 14.7
had12 CLP 0.0 1.6 11.0 0.5 tai80b CLP 0.2 18.8 53.2 44.0
kra32 CLP 4.7 15.9 42.0 54.0 tai80a CLP 1.4 9.2 15.3 16.3

kra30b CLP 1.1 10.4 37.7 10.3 tai64c Gurobi 1.2 11.5 217.6 0.4
kra30a CLP 2.9 11.8 38.0 12.6 tai60a CLP 1.3 8.0 18.3 6.3
lipa90a CLP 0.8 1.2 1.8 1.9 tai60b CLP 0.0 19.7 65.1 40.4
lipa90b CLP 0.0 25.3 30.8 30.7 tai50b CLP 0.1 12.7 64.9 7.5
lipa80a CLP 0.8 1.3 2.0 1.9 tai50a CLP 1.3 9.4 17.7 6.8
lipa80b CLP 0.0 25.2 31.3 30.2 tai40a CLP 1.0 7.1 18.2 6.2
lipa70a CLP 0.9 1.5 2.2 2.5 tai40b CLP 0.0 16.7 79.7 8.2
lipa70b CLP 0.0 24.4 29.6 30.2 tai35b CLP 0.1 12.8 66.2 3.0
lipa60b CLP/Gurobi 0.0 23.4 28.6 0.0 tai35a CLP 0.7 7.7 17.9 5.6
lipa60a CLP 1.1 1.5 2.6 1.4 tai30b CLP 0.2 34.2 94.0 30.9
lipa50a CLP 1.2 1.9 2.8 1.4 tai30a CLP 1.1 7.3 18.9 6.7
lipa50b CLP/Gurobi 0.0 21.8 27.9 0.0 tai25b CLP 0.0 26.0 144.7 9.7
lipa40a CLP 1.4 1.8 3.2 1.7 tai25a CLP 0.9 6.4 19.1 5.5
lipa40b CLP/Gurobi 0.0 21.5 29.3 0.0 tai20a CLP 0.3 7.1 22.3 5.2
lipa30a CLP 1.5 2.6 4.2 2.6 tai20b CLP 0.0 26.4 186.5 1.0
lipa30b CLP/Gurobi 0.0 19.1 24.2 0.0 tai17a CLP 0.0 4.7 19.3 3.4
lipa20b CLP/Gurobi 0.0 15.8 27.4 0.0 tai15a CLP 0.0 6.2 19.7 3.8
lipa20a CLP 0.0 3.1 6.7 3.1 tai15b CLP 0.0 0.6 571.3 0.3
nug30 CLP 1.5 8.9 29.5 9.1 tai12b CLP/Gurobi 0.0 5.9 60.9 0.0
nug28 CLP 0.1 7.9 30.8 8.2 tai12a CLP/Gurobi 0.0 6.9 27.3 0.0
nug27 CLP 2.1 10.5 37.5 5.5 tho150 CLP 0.3 11.7 20.7 19.6
nug25 CLP 0.1 4.8 28.7 2.4 tho40 CLP 0.0 12.3 38.3 6.4
nug24 CLP 0.0 7.8 28.6 1.8 tho30 CLP 0.0 7.7 36.4 12.3
nug22 CLP 0.0 4.3 30.4 0.5 wil100 CLP 0.0 4.5 9.7 9.7
nug20 CLP 0.0 5.0 23.5 5.1 wil50 CLP 0.0 5.6 14.0 5.2

2.6 Computational Cost Based Algorithm Generation

We have developed a modular, multi-node, multi-GPU computational framework for discovering

novel algorithms utilizing ensemble MCTS, RL, and tokenization techniques. Our framework in-

cludes a profiling module designed to estimate the computational cost of individual primitives. By

leveraging this profiling, we set a fixed computational budget for training an ensemble MCTS-based
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RL agent, enabling it to identify optimal sequences of primitives that minimize the optimality gap

while adhering to computational constraints. We compared our newly trained model against our

previous approaches, including Reinforcement Learning with multi-layer perceptron (RL MLP),

Simulated Annealing (SA), and branch and bound (BB). The new model significantly outperforms

prior methods, achieving optimality gaps roughly two times smaller than state-of-the-art methods.

Supply chain optimization poses significant computational challenges, characterized as a strongly

NP-hard combinatorial optimization problem, with complexity scaling factorially (O(𝑛!)). For

networks exceeding 60 nodes, the solution space surpasses the number of atoms in the universe.

Current state-of-the-art methods, such as simulated annealing (complexity O(𝑛4)) and branch and

bound (complexity O(2𝑛) in the worst case), become computationally prohibitive as problem size

grows. In contrast, our CLP approach automatically generates tailored algorithms with substan-

tially better computational complexity, typically ranging from O(𝑛2) to O(𝑛3). This improvement

corresponds to an average 10,000-fold reduction in computational effort (measured in FLOPS) for

problems of size 100. Additionally, the CLP method consistently achieves superior solution quality,

frequently finding optimal solutions that state-of-the-art methods fail to identify. For instance, for

problems of size 80, our approach reduces the optimality gap by a factor of approximately 10.

Empirical evidence suggests that solution quality improvement scales quadratically with problem

size, indicating an anticipated thousand-fold quality improvement for problems of size 250. Such

advances directly translate into more efficient routing, optimized inventory allocation, reduced op-

erational costs, and fewer human casualties during critical operational scenarios, including wartime

logistics. Extending our framework to quantum computing, we achieved significant improvements

in quantum algorithms such as Grover’s algorithm, reducing the required number of qubits by a

factor of two. This reduction is critical because quantum errors due to decoherence and noise scale

exponentially with the number of qubits, thus dramatically enhancing algorithm robustness and

practical reliability.
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Figure S2: Comparison of workflows used by ADAPT-QAOA and our CLP-based approach for

generating quantum circuits for QAOA.
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