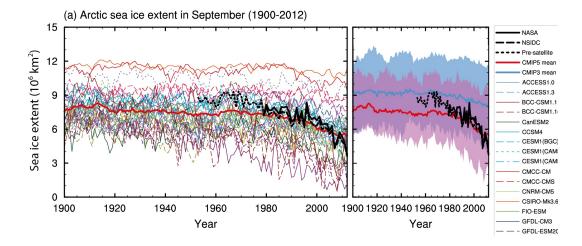
Model Aggregation: Data-driven combination of black box models

Theo Bourdais PhD Student, Computing + Mathematical Sciences

June 15th 2025

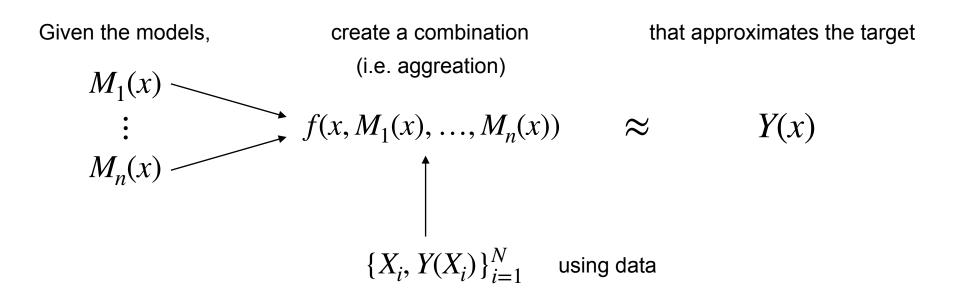
Real-life example from the IPCC



Arctic sea ice extent estimated by many models,

Coupled Model Intercomparison Project (report AR5 - figure 9.24)

The aggregation problem



Best Mean Squared Error Aggregation

The best possible aggregation in Mean Squared Error is

 $M_A^*(x) := \underset{f \text{ measurable}}{\operatorname{argmin}} \mathbb{E}[|Y(x) - f(x, M_1(x), \dots, M_n(x))|^2] = \mathbb{E}[Y(x)|M_1(x), \dots, M_n(x)]$

This is intractable in general

Special Case: $(Y(x), M_1(x), \dots, M_n(x))$ is Gaussian

$$M_{A}^{*}(x) = \sum_{i=1}^{n} \alpha_{i}^{*}(x)M_{i}(x)$$

$$\alpha^{*}(x) = \underset{a \in \mathbb{R}^{n}}{\operatorname{argmin}} \mathbb{E}\left[\left| \left| Y(x) - \sum_{i=1}^{n} a_{i}M_{i}(x) \right|^{2} \right] = \mathbb{E}\left[M(x)M(x)^{T} \right]^{-1} \mathbb{E}\left[M(x)Y(x) \right]$$
Caltech

Best case aggregation: Gaussian models

To solve the Laplace equation:

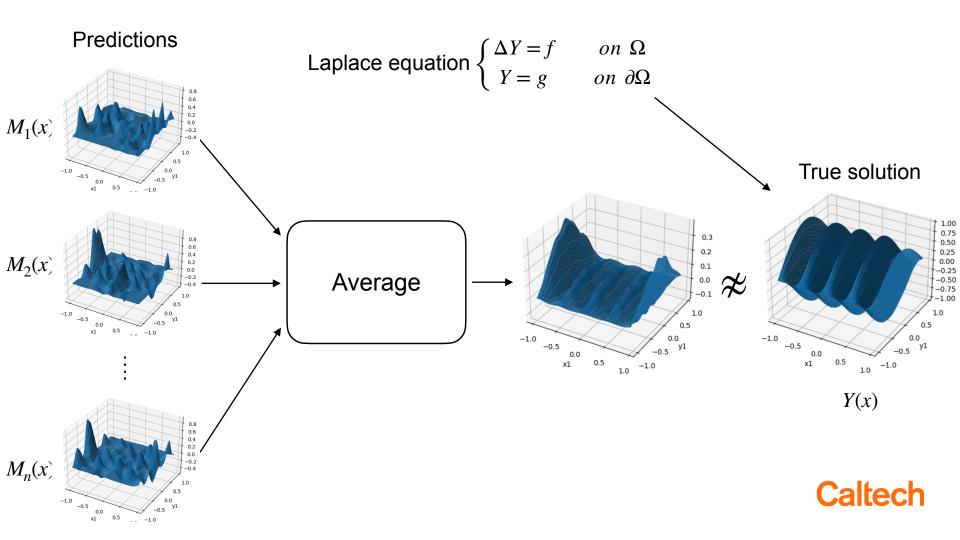
$$\begin{cases} \Delta Y = f & on \ \Omega \\ Y = g & on \ \partial \Omega \end{cases}$$

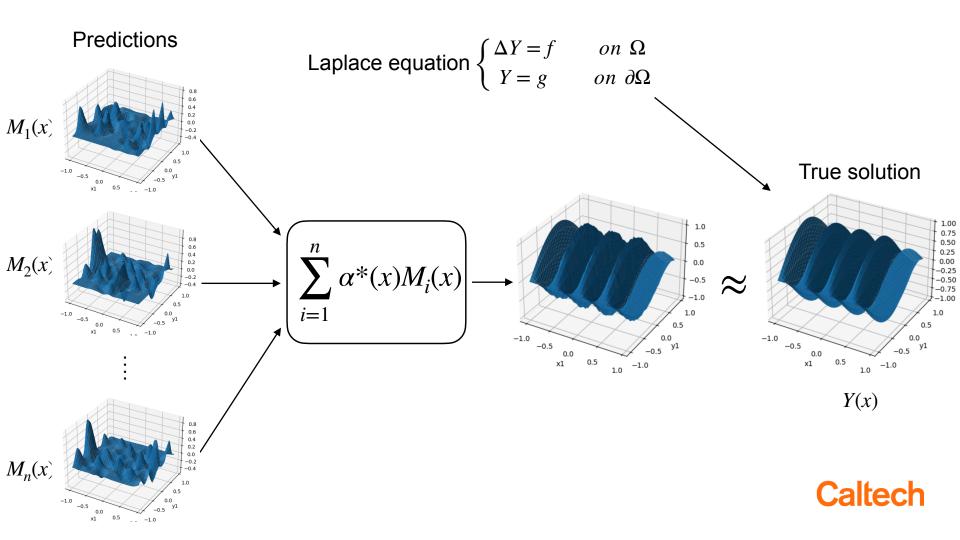
We can use a Gaussian process with:

- A kernel k
- A set of collocation points $X \subset \Omega$

To get a Gaussian approximation of the solution [Chen et al., 2021]

$$\xi \sim \mathcal{N}(0,k) \quad \hat{Y} = \mathbb{E}[\xi \mid \Delta \xi(X) = f(X)]$$





Minimal Error Aggregation This does not work!

 α^* is defined as:

$$\alpha^*(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \mathbb{E}\left[\left| Y(x) - \sum_{i=1}^n a_i M_i(x) \right|^2 \right]$$

And we only have access to data $\{X_i, Y(X_i)\}_{i=1}^N$. So we could pick a Machine Learning Method, learn over the training set and extrapolate for all *x*

$$\hat{\alpha}_E = \underset{a}{\operatorname{argmin}} \sum_{k=1}^{N} \left[\left| Y(X_k) - \sum_{i=1}^{n} a_i(X_k) M_i(X_k) \right|^2 \right]$$

(This is Mixture-of-Experts with frozen experts)

A pathological example

Given the target, models and data:

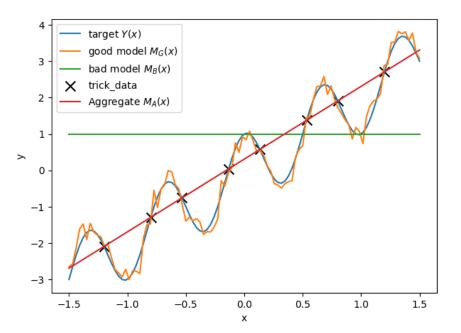
- Take α linear

 $\alpha(x) = (a_G x + b_G, a_B x + b_B)$

• Train using empirical MSE

Notice that:

 For each data point, the good model performs better than the bad model



- The aggregate ignores the good model and interpolates the data
- · Aggregation uses models as features, not approximations of Y

Minimal Variance Aggregation

Problem: we don't have enough constraints / we didn't define what a good model is. Let

$$\begin{cases} M_1(x) = Y(x) + \epsilon_1(x) \\ \vdots & \text{where} \\ M_n(x) = Y(x) + \epsilon_n(x) \end{cases}$$

	(For simplicity)	ϵ_i are independent
ł	(Write)	$Var[\epsilon_i(x)] = V_i(x)$
	(Assumption)	$\mathbb{E}[\epsilon_i(x)] = 0$

Then the aggregation is unbiased if

$$\sum_{i=1}^{n} \alpha_i = 1$$

Minimal Variance Aggregation

Note that:

- If $\epsilon_i(x) \sim \mathcal{N}(0, V_i(x))$, this is MLE
- If $\mathbb{E}[\epsilon_i(x)] = 0$, $\mathbb{E}[\epsilon_i(x)^2] = V_i(x)$, this is BLUE
- If no assumption, best convex combination

We just need to learn $V_i(x)$, the expected error of each model

Learning the variance/error

To predict the variance, we:

- Write $V_i(x) = e^{\lambda_i(x)}$ where λ_i is a Machine Learning method (Gaussian process, neural network...) to ensure positivity
- Then the aggregation is a softmax
- Use the loss

$$\min_{\lambda_i \in \mathscr{H}} \sum_{k=1}^{N} \left[e^{\lambda_i(X_k)} - (Y(X_k) - M_i(X_k))^2 \right]^2 + \eta \|\lambda_i\|_{\mathscr{H}}^2$$

$$V_i(X_k) \qquad \text{Empirical variance} \qquad \text{Regularization}$$

12 This is different from minimizing the error with a softmax

Theorem on linear regression:

Assume samples $(M_j, Y_j)_{j=1}^N$, which one has the best loss $\mathscr{L}(\alpha) = \mathbb{E}[|Y - \alpha^T M|^2]$?

$$\hat{\alpha}_{E}(x) = \underset{a \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{j=1}^{N} \left[\left| Y_{j} - a^{T} M_{j} \right|^{2} \right]$$

Minimal (Empirical) Error Aggregation

$$\hat{\alpha}_{V}(x) = \underset{a \in \mathbb{R}^{n}}{\operatorname{argmin}} \begin{cases} \sum_{j=1}^{N} \left[\left| Y_{j} - a^{T} M_{j} \right|^{2} \right] \\ \text{such that } \sum_{i=1}^{n} a_{i} = 1 \end{cases}$$

Minimal (Empirical) Variance Aggregation

There exists $\lambda \in [0,1]$ s.t.:

$$\mathcal{L}(\hat{\alpha}_E) = \mathcal{L}(\alpha^*) + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$$

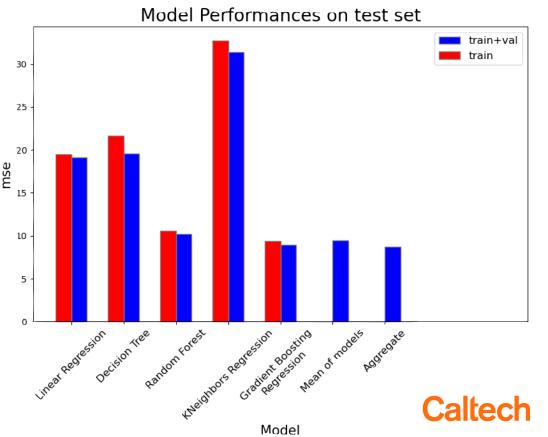
$$\mathscr{L}(\hat{\alpha}_V) = \frac{1}{\lambda} \mathscr{L}(\alpha^*) + \mathcal{O}\left(\frac{1}{N}\right)$$

In model aggregation, N is small and $\lambda \rightarrow 1$

Applications

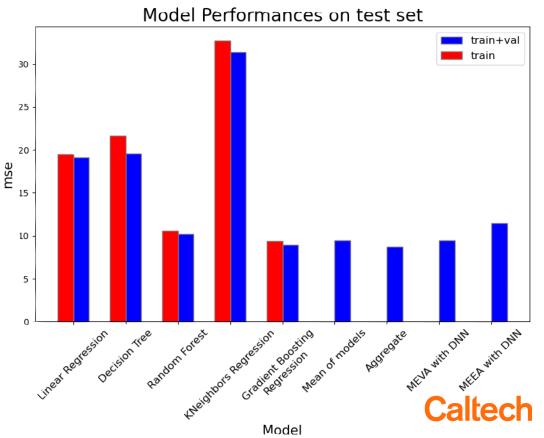
The Boston housing dataset

- Data: 506 samples $\{X_i, Y_i\}$
- Data is split into train-test-val
- Aggregation of red models using val data
 - Red models only see train data
 - Blue models for comparison see train+val
- Aggregation is:
 - Better than models aggregated
 - Better than the mean
 - · Better than all models



The Boston housing dataset

- A comparison with minimal error aggregation:
- Take two identical Neural networks
- Train:
 - To minimize error (bad loss)
 - To estimate variance (our loss)



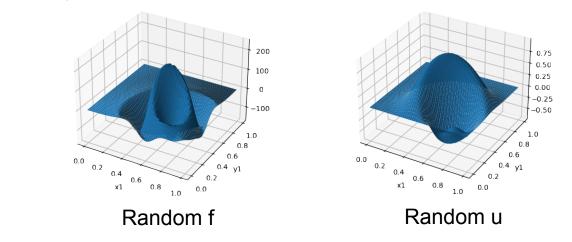
PDE examples

17

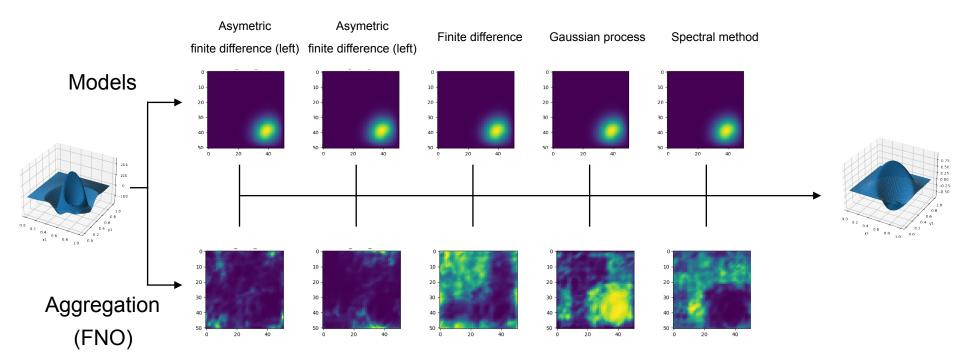
Given a PDE, we may have multiple solvers/approximations giving a solution. For example:

Laplace equation:
$$\begin{cases} \Delta u = f & on \ \Omega \\ u = 0 & on \ \partial \Omega \end{cases}$$

Given models $M_i(f) \approx u$, we want to learn the aggregation operator $\alpha(f)$



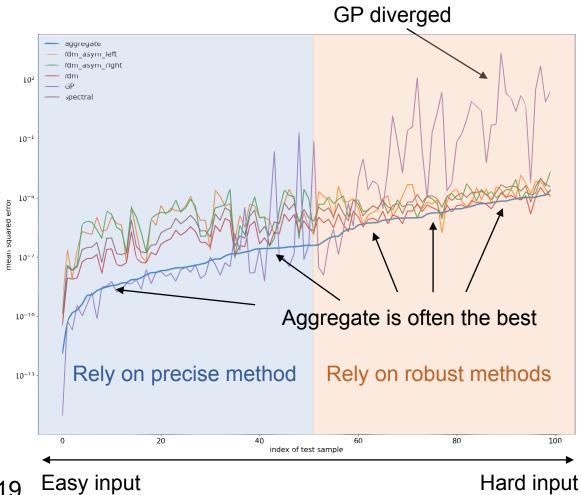
PDE example 1 - Laplace equation



Note: FNO uses both f and model outputs to predict aggregation

18

Caltech



Method	Geometric mean of MSE (log scale)
Aggregate	-6.282
FDM	-5.523
Spectral	-4.988
Gaussian process	-4.739
FDM asymetric (right)	-4.685
FDM asymetric (left)	-4.699

Caltech

19

PDE example 2 - Burger's equation

Consider Burger's equation on $\Omega = [0,1]^2$:

$$\begin{array}{ll} \partial_t u + u \partial_x u = \nu \partial_{xx} u & \mbox{ for } (x,t) \in \Omega \\ u(0,x) = f(x) & \mbox{ for } x \in [0,1] \\ u(t,0) = u(t,1) & \mbox{ for } t \in [0,1] \end{array}$$

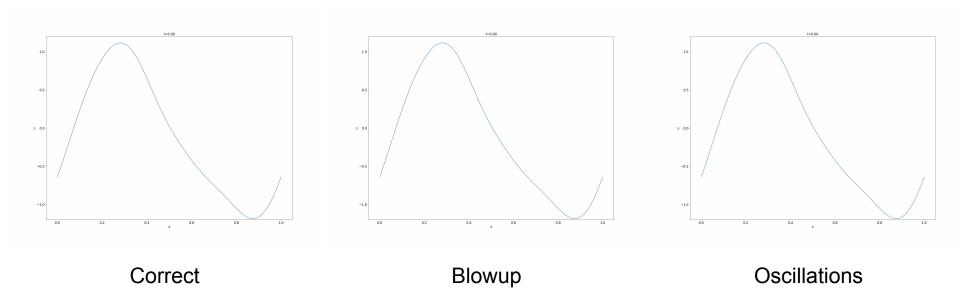
Choose:

• ν to be small

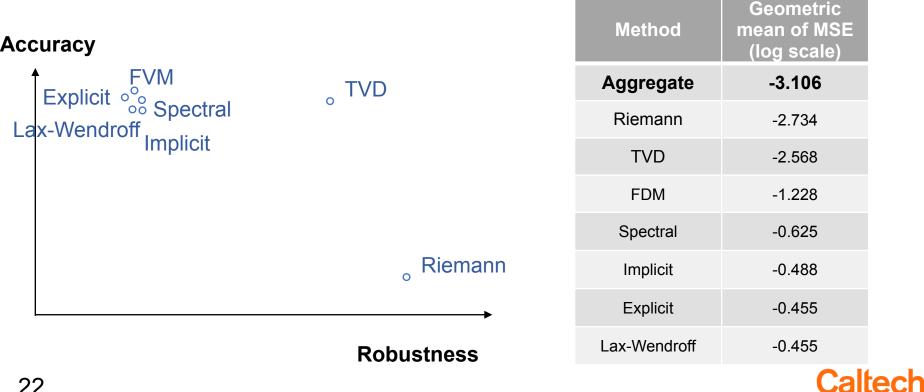
•
$$f \sim \mathcal{N}(0,K)$$
 where $K(x,y) = \exp\left(-\frac{2}{l^2}\sin^2\left(\pi|x_i - x_j|^2\right)\right)$

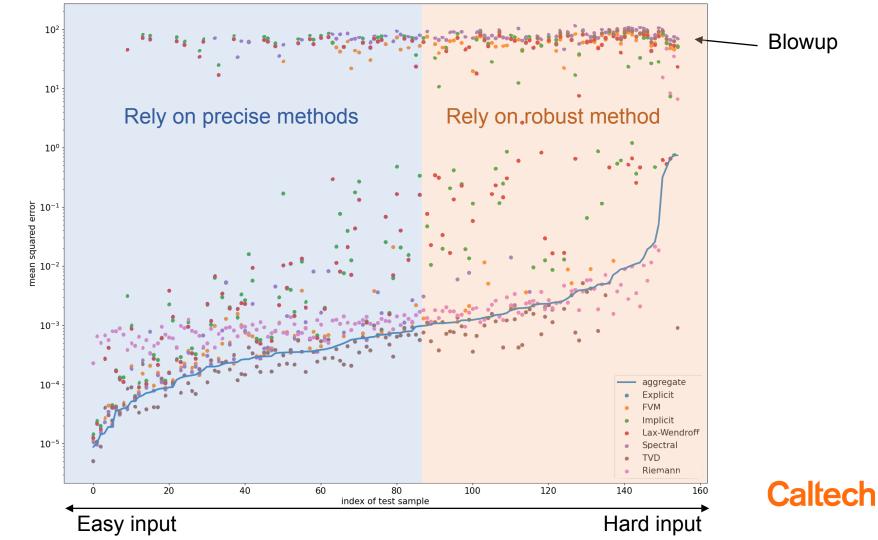
• i.e. f is periodic and infinitely differentiable

PDE example 2 - Burger's equation



PDE example 2 - Burger's equation





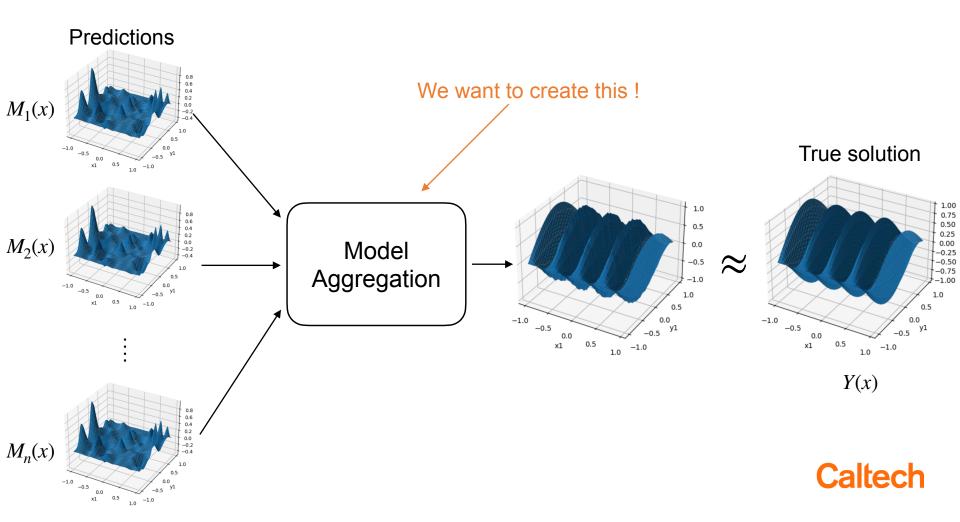
Conclusion

We introduce a simple framework to aggregate existing models

- Only requires model output (no assumption, non intrusive)
- Most useful in scientific computing settings with legacy models
- Aggregate any type of methods (ML, solvers...)

Bourdais, T., & Owhadi, H. (2025).

Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models ICLR 2025

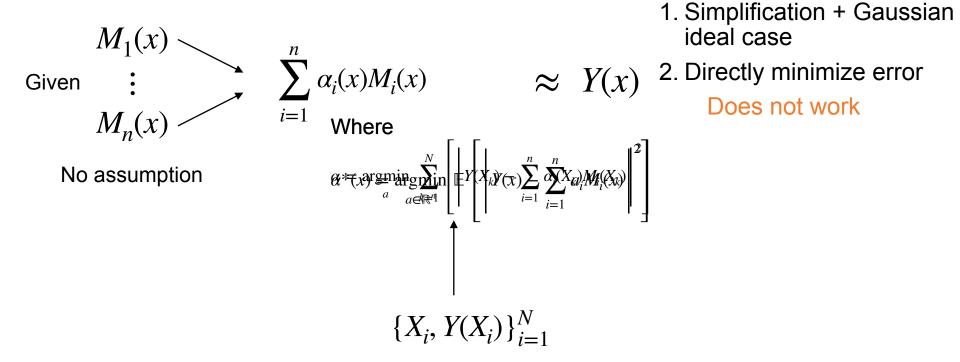


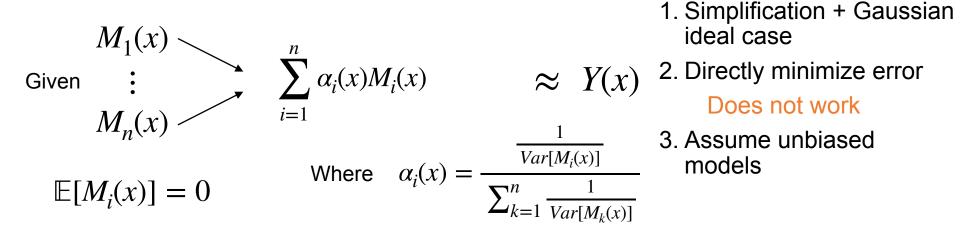
Summary

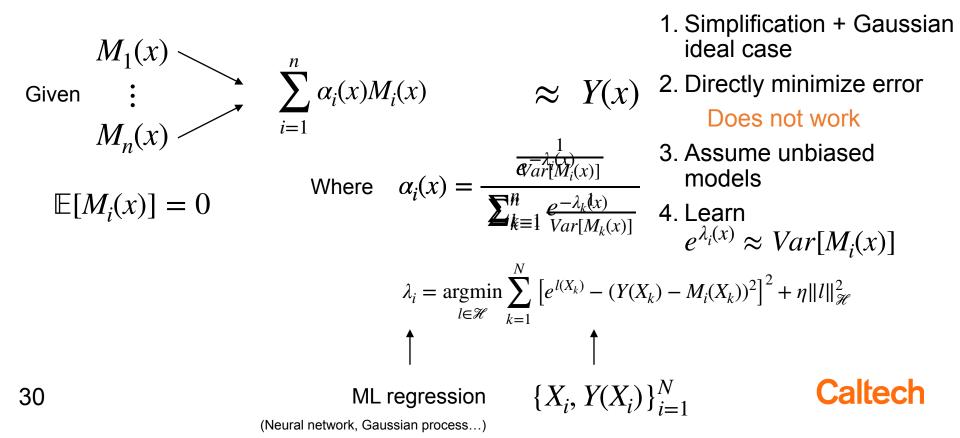
 $M_1(x)$ $f(x, M_1(x), \dots, M_n(x)) \approx Y(x)$ Given $M_n(x)$

Given
$$\underset{M_n(x)}{\overset{n}{:}}$$
 $\sum_{i=1}^n \alpha_i(x)M_i(x)$ $\approx Y(x)$
 $Where$
 $\alpha^*(x) = \underset{a \in \mathbb{R}^n}{\operatorname{argmin}} \mathbb{E}\left[\left| Y(x) - \sum_{i=1}^n a_i M_i(x) \right|^2 \right]$

1. Simplification + Gaussian ideal case







Minimal Variance Aggregation

Let:

$$\begin{cases} M_1(x) = Y(x) + \epsilon_1(x) \\ \vdots \\ M_n(x) = Y(x) + \epsilon_n(x) \end{cases}$$

Where

- c_i are independent (ease of presentation)
- We write $\mathbb{E}\left[|Y(x) M_i(x)|^2\right] = V_i(x)$

