
Model Aggregation: 
Data-driven combination of black box models

Theo Bourdais 
PhD Student, Computing + Mathematical Sciences

June 15th 2025



Real-life example from the IPCC

Arctic sea ice extent estimated by many models,  
Coupled Model Intercomparison Project (report AR5 - figure 9.24)
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The aggregation problem
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M1(x)
⋮

Mn(x)

Given the models, create a combination 
(i.e. aggreation)

f(x, M1(x), …, Mn(x))

that approximates the target

Y(x)≈

using data{Xi, Y(Xi)}N
i=1



Best Mean Squared Error Aggregation

The best possible aggregation in Mean Squared Error is
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Special Case:  is Gaussian(Y(x), M1(x), . . , Mn(x))

M*A (x) =
n

∑
i=1

α*i (x)Mi(x)

α*(x) = argmin
a∈ℝn

𝔼 Y(x) −
n

∑
i=1

aiMi(x)

2

= 𝔼 [M(x)M(x)T]−1 𝔼 [M(x)Y(x)]

M*A (x) := argmin
f measurable

𝔼[|Y(x) − f (x, M1(x), . . , Mn(x))|2] = 𝔼[Y(x)|M1(x), . . . , Mn(x)]

This is intractable in general



Best case aggregation: Gaussian models

To solve the Laplace equation:  

 

We can use a Gaussian process with: 

• A kernel  

• A set of collocation points  

To get a Gaussian approximation of the solution [Chen et al., 2021]  

{ΔY = f on Ω
Y = g on ∂Ω

k
X ⊂ Ω

ξ ∼ 𝒩(0,k) ̂Y = 𝔼[ξ |Δξ(X ) = f (X )]



Average ≉

…
.

Predictions

M1(x)

M2(x)

Mn(x)

True solution

Y(x)

Laplace equation {ΔY = f on Ω
Y = g on ∂Ω



≈

…
.

Predictions

M1(x)

M2(x)

Mn(x)

True solution

Y(x)

Laplace equation {ΔY = f on Ω
Y = g on ∂Ω

n

∑
i=1

α*(x)Mi(x)



Minimal Error Aggregation 
 is defined as: 

  

And we only have access to data . So we could pick a Machine Learning 
Method, learn over the training set and extrapolate for all  

 

(This is Mixture-of-Experts with frozen experts)

α*

α*(x) = argmin
a∈ℝn

𝔼 Y(x) −
n

∑
i=1

aiMi(x)

2

{Xi, Y(Xi)}N
i=1

x

α̂E = argmin
a

N

∑
k=1

Y(Xk) −
n

∑
i=1

ai(Xk)Mi(Xk)

2
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This does not work!
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A pathological example 
Given the target, models and data: 

• Take  linear 
 

• Train using empirical MSE 

Notice that:  
• For each data point, the good 

model performs better than the 
bad model

α
α(x) = (aGx + bG, aBx + bB)

• The aggregate ignores the good model and interpolates the data 
• Aggregation uses models as features, not approximations of Y



Minimal Variance Aggregation
Problem: we don’t have enough constraints / we didn’t define what a good model is. 
Let 

 

Then the aggregation is unbiased if 

M1(x) = Y(x) + ϵ1(x)
⋮

Mn(x) = Y(x) + ϵn(x)
 where 

(For simplicity) ϵi are independent

(Write) Var[ϵi(x)] = Vi(x)
(Assumption) 𝔼[ϵi(x)] = 0
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n

∑
i=1

αi = 1



Minimal Variance Aggregation
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We just need to learn , the expected error of each modelVi(x)

αV(x) = argmin 𝔼 Y(x) −
n

∑
i=1

aiMi(x)

2

αV(x)T M(x) =
∑n

i=1
1

Vi(x) Mi(x)

∑n
i=1

1
Vi(x)n

∑
i=1

αi = 1

Note that: 
• If , this is MLE 
• If , this is BLUE 
• If no assumption, best convex combination

ϵi(x) ∼ 𝒩(0,Vi(x))
𝔼[ϵi(x)] = 0, 𝔼[ϵi(x)2] = Vi(x)



Learning the variance/error
To predict the variance, we:  

• Write  where  is a Machine Learning method (Gaussian 
process, neural network…) to ensure positivity 

• Then the aggregation is a softmax 
• Use the loss 

Vi(x) = eλi(x) λi

min
λi∈ℋ

N

∑
k=1

[eλi(Xk) − (Y(Xk) − Mi(Xk))2]2 + η∥λi∥2
ℋ

12

Regularization
Empirical varianceVi(Xk)

This is different from minimizing the error with a softmax



Theorem on linear regression:  
Assume samples , which one has the best loss ? (Mj, Yj)N

j=1 ℒ(α) = 𝔼[|Y − αT M|2]
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α̂E(x) = argmin
a∈ℝn

N

∑
j=1

[ Yj − aT Mj
2]

Minimal (Empirical) Error Aggregation

α̂V(x) = argmin
a∈ℝn

∑N
j=1 [ Yj − aT Mj

2]
such that ∑n

i=1 ai = 1

Minimal (Empirical) Variance Aggregation

There exists  s.t.: λ ∈ [0,1]

ℒ(α̂E) = ℒ(α*) + 𝒪 ( 1

N ) ℒ(α̂V) =
1
λ

ℒ(α*) + 𝒪 ( 1
N )

In model aggregation,  is small and N λ → 1



Applications
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The Boston housing dataset
• Data: 506 samples  

• Data is split into train-test-val  
• Aggregation of red models using 

val data 
• Red models only see train data 
• Blue models for comparison 

see train+val 

• Aggregation is: 
• Better than models aggregated 
• Better than the mean 
• Better than all models

{Xi, Yi}
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The Boston housing dataset
A comparison with minimal error 
aggregation: 
• Take two identical Neural 

networks 
• Train: 

• To minimize error (bad loss) 
• To estimate variance (our 

loss)
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PDE examples
Given a PDE, we may have multiple solvers/approximations giving a solution.  
For example:  

 

Given models , we want to learn the aggregation operator 

Laplace equation: {Δu = f on Ω
u = 0 on ∂Ω

Mi( f ) ≈ u α( f )

Random uRandom f
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PDE example 1 - Laplace equation
Asymetric  

finite difference (left)

Asymetric  

finite difference (left)
Finite difference Gaussian process Spectral method

Models

Aggregation 
(FNO)

Note: FNO uses both  and model outputs to predict aggregationf
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Method
Geometric 

mean of MSE 
(log scale)

Aggregate -6.282

FDM -5.523

Spectral -4.988

Gaussian process -4.739

FDM asymetric 
(right) -4.685

FDM asymetric (left) -4.699

Easy input Hard input

GP diverged

Rely on precise method Rely on robust methods

Aggregate is often the best
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PDE example 2 - Burger’s equation
Consider Burger’s equation on : 

 

Choose:  

•  to be small  

•  

• i.e.  is periodic and infinitely differentiable 

Ω = [0,1]2

∂tu + u∂xu = ν∂xxu  for (x, t) ∈ Ω
u(0,x) = f (x)  for x ∈ [0,1]

u(t,0) = u(t,1)  for t ∈ [0,1]

ν

f ∼ 𝒩(0,K ) where K(x, y) = exp (−
2
l2

sin2 (π|xi − xj|2))
f
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PDE example 2 - Burger’s equation

Correct Blowup Oscillations 
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PDE example 2 - Burger’s equation

Accuracy

Robustness

Riemann

TVDFVM
Spectral

Implicit

Explicit
Lax-Wendroff

Method
Geometric 

mean of MSE 
(log scale)

Aggregate -3.106

Riemann -2.734

TVD -2.568

FDM -1.228

Spectral -0.625

Implicit -0.488

Explicit -0.455

Lax-Wendroff -0.455
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Easy input Hard input

Blowup

Rely on precise methods Rely on robust method



Conclusion

We introduce a simple framework to aggregate existing 
models 

• Only requires model output (no assumption, non 
intrusive) 

• Most useful in scientific computing settings with 
legacy models 

• Aggregate any type of methods (ML, solvers…)

Bourdais, T., & Owhadi, H. (2025).  
Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of 
black box models 
ICLR 2025



…
.

Predictions

True solution

≈

M1(x)

M2(x)

Mn(x)

Y(x)

We want to create this ! 

Model 
Aggregation



Summary
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M1(x)
⋮

Mn(x)
f(x, M1(x), …, Mn(x)) Y(x)≈Given



Summary
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M1(x)
⋮

Mn(x)
Y(x)≈Given

1. Simplification + Gaussian 
ideal case 

Where 

α*(x) = argmin
a∈ℝn

𝔼 Y(x) −
n

∑
i=1

aiMi(x)

2

n

∑
i=1

αi(x)Mi(x)



Summary

28

M1(x)
⋮

Mn(x)
Y(x)≈Given

{Xi, Y(Xi)}N
i=1

1. Simplification + Gaussian 
ideal case 

2. Directly minimize error 
Does not work 

n

∑
i=1

αi(x)Mi(x)

No assumption

Where 

α*(x) = argmin
a∈ℝn

𝔼 Y(x) −
n

∑
i=1

aiMi(x)

2
Where 

α = argmin
a

N

∑
k=1

Y(Xk) −
n

∑
i=1

αi(Xk)Mi(Xk)

2



Summary
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M1(x)
⋮

Mn(x)
Y(x)≈Given

1. Simplification + Gaussian 
ideal case 

2. Directly minimize error 
Does not work 

3. Assume unbiased 
models 

n

∑
i=1

αi(x)Mi(x)

𝔼[Mi(x)] = 0 αi(x) =
1

Var[Mi(x)]

∑n
k=1

1
Var[Mk(x)]

Where



Summary
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M1(x)
⋮

Mn(x)
Y(x)≈Given

1. Simplification + Gaussian 
ideal case 

2. Directly minimize error 
Does not work 

3. Assume unbiased 
models 

4. Learn 
 eλi(x) ≈ Var[Mi(x)]

n

∑
i=1

αi(x)Mi(x)

𝔼[Mi(x)] = 0 αi(x) =
1

Var[Mi(x)]

∑n
k=1

1
Var[Mk(x)]

Where αi(x) =
e−λi(x)

∑n
k=1 e−λk(x)

λi = argmin
l∈ℋ

N

∑
k=1

[el(Xk) − (Y(Xk) − Mi(Xk))2]2 + η∥l∥2
ℋ

{Xi, Y(Xi)}N
i=1ML regression 

(Neural network, Gaussian process…)



Minimal Variance Aggregation
Let: 

 

Where 

•  are independent (ease of presentation) 

• We write   

M1(x) = Y(x) + ϵ1(x)
⋮

Mn(x) = Y(x) + ϵn(x)

ϵi

𝔼 [|Y(x) − Mi(x)|2] = Vi(x)
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…
.

Predictions

True solution

Average ≉

M1(x)

M2(x)

Mn(x)

Y(x)


