Talks and presentations

Talk on Model Aggregation

February 17, 2025

Talk, DTE AICOMAS, Paris, France

My talk on Model Aggregation! I have given versions of this talk at:

  • JPL on January 17th, 2025.
  • DTE AICOMAS in Paris on February 17th, 2025.

Abstract

Whether deterministic or stochastic, models can be viewed as functions designed to approximate a specific quantity of interest. We introduce Minimal Empirical Variance Aggregation (MEVA), a data-driven framework that integrates predictions from various models, enhancing overall accuracy by leveraging the individual strengths of each. This non-intrusive, model-agnostic approach treats the contributing models as black boxes and accommodates outputs from diverse methodologies, including machine learning algorithms and traditional numerical solvers. We advocate for a point-wise linear aggregation process and consider two methods for optimizing this aggregate: Minimal Error Aggregation (MEA), which minimizes the prediction error, and Minimal Variance Aggregation (MVA), which focuses on reducing variance. We prove a theorem showing that MVA can be more robustly estimated from data than MEA, making MEVA superior to Minimal Empirical Error Aggregation (MEEA). Unlike MEEA, which interpolates target values directly, MEVA formulates aggregation as an error estimation problem, which can be performed using any backbone learning paradigm. We demonstrate the versatility and effectiveness of our framework across various applications, including data science and partial differential equations, illustrating its ability to significantly enhance both robustness and accuracy.

Talk on Computational Hypergraph Discovery

January 17, 2024

Talk, One World Seminar Series on the Mathematics of Machine Learning, Online

My talk on Computational Hypergraph discovery! I have given versions of this talk at:

Abstract

Most scientific challenges can be framed into one of the following three levels of complexity of function approximation. Type 1: Approximate an unknown function given input/output data. Type 2: Consider a collection of variables and functions, some of which are unknown, indexed by the nodes and hyperedges of a hypergraph (a generalized graph where edges can connect more than two vertices). Given partial observations of the variables of the hypergraph (satisfying the functional dependencies imposed by its structure), approximate all the unobserved variables and unknown functions. Type 3: Expanding on Type 2, if the hypergraph structure itself is unknown, use partial observations of the variables of the hypergraph to discover its structure and approximate its unknown functions. While most Computational Science and Engineering and Scientific Machine Learning challenges can be framed as Type 1 and Type 2 problems, many scientific problems can only be categorized as Type 3. Despite their prevalence, these Type 3 challenges have been largely overlooked due to their inherent complexity. Although Gaussian Process (GP) methods are sometimes perceived as well-founded but old technology limited to Type 1 curve fitting, their scope has recently been expanded to Type 2 problems.

We introduce an interpretable GP framework for Type 3 problems, targeting the data-driven discovery and completion of computational hypergraphs. Our approach is based on a kernel generalization of (1) Row Echelon Form reduction from linear systems to nonlinear ones and (2) variance-based analysis. Here, variables are linked via GPs, and those contributing to the highest data variance unveil the hypergraph’s structure. We illustrate the scope and efficiency of the proposed approach with applications to network discovery (gene pathways, chemical, and mechanical), and raw data analysis.